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A transition to collective synchrony in an ensemble of
globally coupled oscillators is known as the Kuramoto
transition. An important application of the theory is collec-
tive dynamics of neuronal populations. Indeed, synchro-
nization of individual neurons is believed to play the cru-
cial role in the emergence of pathological rhythmic brain
activity in Parkinson’s disease, essential tremor, and epi-
lepsies; a detailed discussion of this topic and numerous
citations can be found in Refs. [2]. One approach to sup-
press such an activity is to apply to the system a negative
feedback loop [3, 4].

The weakly nonlinear theory of the Kuramoto transiti-
on in the presence of linear and nonlinear time-delayed
coupling terms is developed. We heavily rely in our analy-
sis on the corresponding treatment of the system without
delay by Crawford [1].

1.Limit Cycle Systems = Phase Models

Our basic model is an ensemble of autonomous oscilla-
tors subject to different types of global coupling. We take
individual oscillators as Van der Pol ones and write the
model as
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where §;(t) is a 3-correlated Gaussian noise: (§; (t)§;(t —
t')) =2D3&;; 3(t’). The ensemble averages are defined as
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In the reduction to phase equations we use the small-
ness of parameters pand €', and suppose the natural fre-
quencies oj to be distributed in a relatively close vicinity of
the mean frequency wg =N~ 2:\‘:1 oj. Because p < j,
the solution of the autonomous Van der Pol oscillator can
be written as xj (t) ~ Aj (t) cos(¢j (t)) where on the limit cy-
cle Aj ~ 2 and ¢j = ;. Because ¢ < i, coupling does not
affect the amplitude, but only the phase.

The absolute value of the complex order parameter
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is close to 0 for nearly uniform, nonsynchronized distribu-

tions, and reaches 1 for strongly synchronized states.
Below we will be interested in linear coupling with and

without time delay [3], and in a nonlinear coupling [4]:
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As a result, the phase equations for the oscillators read
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where o1 €" = 2(Kx +iKy). Coupling types: (i) ¢ describes
collective linear coupling without delay, as in the original
Kuramoto model; (ii) e¢ describes linear coupling with de-
lay, as has been proposed in [3]; (iii) & describes nonli-
near coupling with delay, as has been proposed in [4].

2.Linear Feedback
Thermodynamic limit and stability
In the thermodynamic limit N — - we can introduce

a distribution of natural frequencies g(®) and rewrite sy-
stem (3) (here g5 = 0) as
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o(0) = w+s/ g(e)sin (g(w,t) — o(.1)) do’
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The distribution density p(o, @, t) (_)bznp(m o, t)dp=1)is
governed by the Fokker-Planck equation:
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The order parameter (2) takes the form
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A linear stability analysis of the absolutely nonsynchro-
nous state po = (2r) ! reveals the only perturbations can

be excited are
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and the spectrum of A, is formed by the roots of the
“spectral function”
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(for A_ the spectral function is A*(1)).
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Generally, 3 ( [ g(®)(D+im)~t dw) = | og(o)(D?+

?)~1dw # 0; therefore real roots of A(%) (including A = 0)
are not admitted and only one complex root A = —iQ with
the corresponding mode p; = ()€ (P~ 4 cc determi-
nes linear stability. From the linear analysis we thus ex-
pect a Hopf bifurcation for the transition to synchrony.

In the degenerated case [ wg(w)(D? +©?) "t dw =0,
a relation A*(A) = A(L*) holds, then real roots are admit-
ted and complex roots appear in pairs (A, 1*). We expect
that in real applications the degeneracy of the frequency
distribution is absent, so we do not consider this situation
below.

Weakly nonlinear analysis
Conventional multiple scale analysis yields
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and for the order parameter R(t) = ZnA’ieiQ‘ + O(A?). whe-
re the amplitude A obeys
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Ay is the linear growth rate
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Eqg. (10) and the expressions (11), (12) are the main
result of our analysis. They give a full description of the
effect of the delayed global feedback on the synchroni-
zation transition in the ensemble of oscillators. The linear
part (11) has already been discussed in [3], and the ex-
pression (12) completes the description of the synchroni-
zation transition.

For the Lorentzian distribution g(®) = i my) 7
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(v is a characteristic width of the distribution, g is the

mean frequency), G(2) = »- @ 1,,{ 5, and the characteri-
stic equation A(A = B +iQ) = 0 takes the form
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The threshold value &g is determined by = 0. Substitu-
ting the expressions above in (11),(12) we obtain
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Fig. 1: Effect of delayed feedback on the order pa-
rameter for g =1, y=D =0.01.

The stationary amplitude A; is calculated according
to (10) | Ag|2 = R, /RP. To demonstrate, how the delayed
feedback affects the amplitude, we present in Fig. 1 the
ratio |R|/|Ry| where Ry is the order parameter in the ab-
sence of delayed feedback for the same closeness to the
transition point €.

3.Nonlinear Delayed Feedback

For purely nonlinear delayed feedback the linear pro-
blem is the same as in the previous case where one sets
ef = 0. Therefore as soon as g(wg +Aw) = g(wy — Ao),
critical perturbations either have the frequency mq or are
degenerate: they appear in pairs wg — Ao, ®y +Aw® (see
discussion by Crawford [1]). We restrict ourselves to non-
degenerate case only.

For nearly critical behavior of small perturbations
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the order parameter is R(t) = 2nA7é“ + O(A?), and
Eq. (10) holds with
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For Lorentzian distribution of natural frequencies
the characteristic equation A(A) = 0 has only one root;

and the bifurcation of the non-synchronous state is a Hopf
one at gg = 2(y+ D) with the frequency Q = ay. So,
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The real part of P determines, according to (10), the
amplitude of the establishing collective mode \Al\z =
Ao (RP)~1, with
1
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One can see that depending on the value of v, the am-
plitude decreases or increases due to additional nonline-
ar feedback. Moreover, for strong enough feedback RP
can become negative, what means a subcritical Kuramoto
transition. Also, a nonlinear shift of the rotation frequency
of Rin the counterclockwise direction appears
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4.Conclusions

We have developed a weakly nonlinear analysis of the
effect of delayed feedback on the Kuramoto transiti-
on. In particular,

— We show that a linear delayed feedback not only
controls the transition point, but effectively changes
the nonlinear terms near the transition;

— A purely nonlinear delayed coupling does not ef-
fect the transition point, but can reduce or enhance
the amplitude of collective oscillations.

We have restricted our attention to the most gene-
ral case of Hopf bifurcation and have not conside-
red other types of transition that occur under certain
symmetries. The analysis is, of course, restricted to
a vicinity of the transition point, moreover, the basic
phase-coupling model assumes that all type of coup-
ling are weak. A strong coupling case should be stu-
died numerically.
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