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ABSTRACT

We develop a circular cumulant representation for the recurrent network of quadratic integrate-and-fire neurons subject to noise. The synap-
tic coupling is global or macroscopically equivalent to it. We assume a Lorentzian distribution of the parameter controlling whether the
isolated individual neuron is periodically spiking or excitable. For the infinite chain of circular cumulant equations, a hierarchy of smallness
is identified; on the basis of it, we truncate the chain and suggest several two-cumulant neural mass models. These models allow one to go
beyond the Ott–Antonsen Ansatz and describe the effect of noise on hysteretic transitions between macroscopic regimes of a population with
inhibitory coupling. The accuracy of two-cumulant models is analyzed in detail.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0061575

Some types of populations of coupled neurons exhibit a surpris-
ingly simple collective behavior. Understanding this simplicity is
important both for the macroscopic characterization of neuronal
tissues as an active medium and for mathematical modeling of
information-processing tasks, which, obviously, cannot be asso-
ciated with low-dimensional dynamics. The Ott–Antonsen (OA)
and Watanabe–Strogatz (WS) theories explained this low dimen-
sionality and gave a mathematical tool for theoretical studies
of these populations. In particular, as a rigorous mathematical
result, the clusterization dynamics was found to be forbidden by
these theories. Later on, a so-called circular cumulant approach
was suggested for dealing with imperfect situations, where the
conditions of the applicability of the OA theory are violated.
The circular cumulant equations allow one to have a theoretical
description for low-dimensional macroscopic dynamics, where
they remain such beyond the OA theory, or deal with dynamics in
higher dimensions, such as the one of clusterization. We present
a detailed derivation of the circular cumulant equations for the
population of quadratic integrate-and-fire neurons subject to
noise and the global synaptic coupling. These equations yield a
hierarchy of finite-dimensional neural mass model reductions.

We report a set of two-cumulant models and the results on their
accuracy for time-independent macroscopic regimes. We also
analyze the effect of noise on the multistability between macro-
scopic states of a population with inhibitory coupling. With the
presented technique, one can derive similar equations for other
types of coupling, noise, etc.

I. INTRODUCTION

Populations of coupled neuron-like oscillators can demonstrate
a surprisingly simple low-dimensional behavior.1–14 Obviously, no
information-processing task can be performed on the basis of such
behavior, but it is important for characterization of neural tissues
as an active medium. For a vast class of paradigmatic mathemati-
cal models, the low dimensionality is dictated by the Ott–Antonsen
(OA)15,16 and Watanabe–Strogatz (WS)17–19 theories. The under-
standing of the nature of this low dimensionality can guide the
studies aimed at mathematical modeling of complex information-
processing behavior, where one can seek to violate the conditions of
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the WS/OA theories. For instance, these theories forbid the cluster-
ization dynamics—in the WS systems, the distribution of elements
between clusters is frozen in the course of temporal evolution—and
reported observations of formation of clusters in Kuramoto-type
ensembles were elucidated to emerge as a result of the inaccuracy
of numerical integration.20

The necessity to generalize the OA theory to the case of popula-
tions of neurons, where the conditions of the original OA theory are
violated, is an imperative. This generalization is expected to allow
one constructing low-dimensional mean-field theories, where they
are applicable. Moreover, with this generalization, one might be able
to address more intricate issues. While the distribution of elements
among clusters is frozen in a perfect case, these clusters will be long-
living objects under a weak violation of the OA conditions. This
combination of persistence and “plasticity” of clusters can be the
basis for some information-processing tasks. Clusterization dynam-
ics, including a particular case as the switching between chimera
states, which was a subject of continuous research interest of Vadim
S. Anishchenko in recent years,21–26 were identified to play a role in
the functioning of neural tissues (e.g., Refs. 27 and 28). A general-
ization of the OA theory might provide a mathematical framework
for describing this type of dynamics.

One of the primary violations of the OA conditions is the
intrinsic noise. The fundamental role of noise for collective dynam-
ics of populations of neurons was identified in Refs. 29 and 30 and
studied, e.g., in Refs. 6–10.

A. Quadratic integrate-and-fire neurons with noise

Let us consider the population of quadratic integrate-and-fire
neurons (QIFs)31 with endogenic noise,

V̇j = V2
j + Ij, (1)

Ij = ηj + σζj(t) + Js(t) + I(t), (2)

where Vj is the membrane voltage, Ij represents the input current for
an individual neuron, ηj is the parameter of an individual neuron (an
isolated neuron is excitable for ηj < 0 and periodically spiking oth-
erwise), I(t) is the external input current, and σζj(t) are independent
Gaussian endogenic (intrinsic) noises: 〈ζj(t) ζm(t + t′)〉 = 2δjmδ(t′).
When Vj reaches +∞, it is reset to −∞, and a synaptic spike is
generated.32 The input synaptic current from other neurons Js(t) is
characterized by the coupling coefficient J, which is negative for an
inhibitory coupling, and a common field

s(t) =
1

N

N
∑

j=1

∑

n

δ

(

t − t(n)
j

)

,

where N is the number of neurons and t(n)
j is the instant of the nth

firing event of the jth neuron. In the thermodynamic limit N → ∞,
common field s(t) = r(t), where the firing rate r(t) is the probability
rate of the finding event of an individual neuron averaged over the
population.

One can introduce a phase variable φ,

Vj = tan
φj

2
,

and rewrite Eq. (1) in its terms,

φ̇j = (1 − cos φj) + (1 + cos φj)
[

ηj + σζj(t) + Js(t) + I(t)
]

. (3)

Let us index the QIFs with the value of their parameter ηj. The
Fokker–Planck equation for the probability density wη(φ, t) of the
stochastic system (3) reads

∂wη

∂t
+

∂

∂φ

(

[1 − cos φ + (1 + cos φ)(η + Js + I(t))] wη

)

= σ 2 ∂

∂φ

(

(1 + cos φ)
∂

∂φ

(

(1 + cos φ)wη

)

)

. (4)

Now, we calculate the firing rate in terms of φ. Given the distri-
bution of η is g(η), in the thermodynamic limit of a large population,
the firing rate equals r(t) =

∫

qη(φ = π) g(η) dη, where qη is the
probability density flux,

qη = [1 − cos φ + (1 + cos φ)(η + Js + I(t))] wη

−σ 2(1 + cos φ)
∂

∂φ

(

(1 + cos φ)wη

)

.

For φ = π , the flux qη(φ = π) = 2wη(π), and one finds

r(t) =

∫

qη(π) g(η)dη = 2

∫

wη(π) g(η)dη. (5)

The voltage mean field for the η-subpopulation

vη = 〈Vη〉 = p.v.

∫ π

−π

dφ tan
φ

2
wη(φ). (6)

Henceforth, 〈· · · 〉 indicates an ensemble average.

B. Firing rate and mean voltage dynamics

For Eqs. (1) and (2) with σ = 0, Montbrió, Pazó, and Roxin
(MRP)5 derived the equations of the mean-field dynamics,

ṙ =
1

π
+ 2rv, (7)

v̇ = v2 + η0 + Jr + I(t) − π 2r2, (8)

where η0 and 1 are parameters of the Lorentzian distribution of ηj,

g(η) =
π−11

(η − η0)
2 + 12

.

The equation system (7) and (8) was shown to be equivalent to the
Ott–Antonsen (OA) Ansatz.15,16

In this paper, our aim is to account for the noise effects,6–9

and we should go beyond the OA and MPR models. To accomplish
this task, one can either employ the “pseudo-cumulant” formalism,33

constructing a modified neural mass model immediately on the
top of the model (7)–(8), or the “circular cumulant” formalism,34–40

which deals with phase variables φj and generalizes the OA theory.
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Even though the former seems to be more natural for the sys-
tem (1)–(2), the latter is of vital interest, as the phase-variable and
OA approaches are extensively employed for the study of collective
dynamics in networks of type-I neurons.1–4,7–9,41–45

C. Circular cumulants

The circular cumulants are analogs of conventional
cumulants47,48 of random variables on the infinite real line but for
the phase/angular variables on the circumference. We introduce
them in association with the Kuramoto–Daido46 order parameters
zm = 〈eimφ〉 as follows. The characteristic function

F(k, t) = 〈ekeiφ
〉 =

∞
∑

m=0

zm(t)
km

m!

serves as the generating function for moments zm. We define the
cumulant-generating function as

9(k, t) = k
∂

∂k
ln F(k, t) =

∞
∑

m=1

κm(t)km,

where κm are circular cumulants. For instance, the first three cumu-
lants are

κ1 = z1, κ2 = z2 − z2
1, κ3 =

z3 − 3z2z1 + 2z3
1

2
.

Here, the first element is just the Kuramoto order parameter, and
the second element measures the deviation of z2 from z2

1, which
would correspond to the OA Ansatz, zm = zm

1 . For the OA Ansatz,
κ1 = z1 and κm>1 = 0, which makes the circular cumulants a natu-
ral framework for dealing with the dynamics deviating from the OA
theory.

In this paper, we present a generation of low-dimensional neu-
ral mass models based on two-cumulant reductions (Sec. II A),
report the effect of noise on the bistability between time-
independent states of the QIF network with global synaptic coupling
(1) and (2) (Sec. II B), and analyze the accuracy of these model
reductions (Sec. II C). In Sec. III, we provide a regular derivation
of the infinite chain of equations for circular cumulants κm and sub-
stantiate the truncations of this chain. The calculation of the firing
rate with circular cumulants is discussed in Sec. III G. Conclusions
are drawn in Sec. IV.

II. RESULTS

A. Two-cumulant reductions

In this section, we present low-dimensional model reductions
for the macroscopic dynamics of noisy QIF populations; the deriva-
tion is provided in Sec. III. The mean-field models beyond the
Ott–Antonsen Ansatz can be formulated in terms of order parame-
ters for phases φj. For the firing rate and the ensemble-mean voltage,
one can find (see Refs. 8, 9, and 36 or Sec. III G)

πr(t) − iv(t) =
1 − Z

1 + Z
+

2κ2

(1 + Z)3
+ O(κ2

2 , κ3), (9)

where Kuramoto order parameter Z = z1 = κ1. For an enhanced
accuracy (e.g., the “Gaussian-friendly” closure35),

πr(t) − iv(t) =
1 − Z

1 + Z
+

2κ2

(1 + Z)3
−

6κ2
2

Z(1 + Z)5
+ O(σ 6). (10)

Two generic two-cumulant reductions can be suggested for the
Lorentzian distribution g(η) = 1/[π{(η − η0)

2 + 12}], where η0 is
the distribution median and 1 is the half width at half maximum.

(i) The minimalistic two-cumulant reduction:

Ż = (i�η0 − 1)Z + h
(

1 + κ2 + Z2
)

−
σ 2

2
(1 + Z)3, (11)

κ̇2 = 2(i�η0 − 1)κ2 + 4hZκ2 −
σ 2

2
(1 + Z)4 − 6σ 2(1 + Z)2κ2,

(12)

where

�η0 = η0 + Js + I(t) + 1, h =
i (η0 + Js + I(t) − 1) − 1

2
.

This reduction is obtained from two first circular cumulant equa-
tions (22) and (23) by neglecting all higher cumulants κn≥2 and as
much smaller terms [like the σ 2κ2

2 -term in (23)] as possible. The
“strong” inaccuracy of this truncation is O(σ 4). Nonetheless, we
keep the σ 2Znκ2-terms in (12) as they maintain the “dissipativeness”
of the dynamics of κ2 for homogeneous populations (1 = 0), even
though these terms are small, ∼σ 4. This model is equivalent to the
model of Ref. 8 in the limit of zero spike duration.

(ii) Two-cumulant reduction compatible with the wrapped
Gaussian distribution of phases,35 i.e., based on the closures
κ3 = (3/2)κ2

2 /κ1 and κ4 = (8/3)κ3
2 /κ

2
1 , which follow from the alge-

braic relations between the circular cumulants of a wrapped Gaus-
sian distribution,

Ż = (i�η0 − 1)Z + h
(

1 + κ2 + Z2
)

− σ 2

(

1

2
(1 + Z)3 +

3

2
(1 + Z)κ2 +

3

2

κ2
2

Z

)

, (13)

κ̇2 = 2(i�η0 − 1)κ2 + h

(

6
κ2

2

Z
+ 4Zκ2

)

− σ 2

(

1

2
(1 + Z)4 + 6(1 + Z)2κ2

+ 15
κ2

2

Z
+

39

2
κ2

2 + 24
κ3

2

Z2

)

. (14)

In Sec. III, we additionally provide more sophisticated model
reductions, which can be less practical because of their complexity.

B. Macroscopic dynamics of globally coupled QIFs

In Fig. 1, one can see the hysteretic transitions between
two coexisting regimes with high and low firing rates, previously
reported5 for the noise-free case. The bistability domain is dimin-
ished by the noise. The impact of noise on the high firing rate
regime and the left boundary of the bistability domain is weak. The
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FIG. 1. Stable states are plotted with black lines for the noise-free case and J/11/2 = 15. The bistability domain monotonously shrinks as the noise intensity increases:
σ 2/13/2 = 0.8 (red), 1.6 (blue), and 3.2 (green). This is an “exact” numeric solution with system (17).

low firing rate regime is influenced much stronger; noise expectedly
induces additional firing events and increases the firing rate. The
domain of the low firing rate regime is significantly diminished, and
the right boundary of the bistability domain is shifted. In Fig. 2, the
effect of noise on the bistability domain is presented in the entire
parameter space.

One can see that the two-cumulant model reductions are rea-
sonably accurate even for as strong noise as σ/13/4 = 1. Notice that
the results are typically especially sensitive to inaccuracies close to
the bifurcation curves, and the bistability domain is bounded by the
saddle-node bifurcation curves.

FIG. 2. The bistability between two regimes occurs within the cusp. Black solid
lines: the “exact” solution for σ/13/4 = 0.1; blue dashed lines: the “exact” solu-
tion for σ/13/4 = 1; circles and squares: the results for the C2e model reduction;
and crests: C3s model reduction for σ/13/4 = 1. The C3s model results are not
shown for σ/13/4 = 0.1 as the discrepancy between the model reduction and
the “exact” solution cannot be seen even for circles.

C. Accuracy of model reductions

Here, we report the accuracy analysis for the macroscopic
model reductions:

(OA) the Ott–Antonsen Ansatz, where in Eqs. (11) and (9),
one sets κ2 = 0 [this corresponds to Ansatz zm = Zm in Eq. (17)
for m = 1];

(C20) the minimalistic two-cumulant approximation (11)
and (12) with (9);

(C2e) the enhanced two-cumulant approximation (26) and (27)
with (9);

(C2G) the two-cumulant approximation (13) and (14) with
(10), which can accurately embed the wrapped Gaussian distribu-
tion; and

(C3s) the two-cumulant approximation (32) and (33) with
quasi-static approximation (30) for κ3 and firing rate (31).

The accuracy and applicability of five reductions are exam-
ined for macroscopic regimes presented in Fig. 1. First, we
demonstrate the relevance of the cumulant expansion for both
weak and moderate noise; in Fig. 3(a), one can see well
pronounced hierarchies of cumulants for σ/13/4 = 0.1 and 1.
Second, the accuracy of Z for the solutions is plotted in
Fig. 3(b). The “exact” solution is calculated with system (17)
and 200 elements zm for the rhs- and 1200 elements for
the lhs-branch solution (usage of less than half of this num-
ber of elements is insufficient for a uniformly accurate cal-
culation of the results plotted in the parameter domain of
Figs. 1 and 2).

The results of the accuracy analysis are summarized in Fig. 4.
The simplest two-cumulant reduction (C20) fails for some regimes
in the presence of strong noise; the enhanced minimalistic two-
cumulant reduction (C2e) and the Gaussian-friendly approximation
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FIG. 3. (a) First four cumulants κ1 = Z (solid lines), κ2 (dashed lines), κ3
(dashed–dotted lines), and κ4 (dotted lines) exhibit a well pronounced hierarchy
of smallness for σ/13/4 = 0.1 (black) and 1 (red); parameter J/11/2 = 15. Two
sets of curves are plotted for the left and right branches of the solution. (b) The
accuracy of reduced models is presented for σ/13/4 = 0.1; black solid lines:
OA, blue dashed: C20, red dotted: C2e, green dashed–dotted: C2G, and magenta
long-dashed: C3s.

(C2G) are optimal since they remain reasonably accurate even for
strong noise. Notice that the OA Ansatz turns out to be inaccurate
already for σ/13/4 > 0.1.

III. METHODS

In this section, we project the Fokker–Planck equation (4)
onto the Fourier basis, show that one can adopt a Lorentzian
distribution g(η) and use the residue theorem (which is more

FIG. 4. The inaccuracy of model reductions is plotted vs σ 2 for the lhs- (open
symbols) and rhs-branch solutions (filled symbols) at J/11/2 = 15; black trian-
gles: OA, blue circles: C20, red squares: C2e, and magenta diamonds: C3s. For
the rhs-branch solution, the error is averaged over η0/1 ∈ [−5.5, 0] [see the
dependence of error on η0 in Fig. 3(b)]. For the lhs-one, the averaging interval is
for η0/1 > −8. Above σ 2/13/2 ≈ 10, the bistability between two macroscopic
regimes disappears. The bold solid lines indicate the small-σ power laws: ∝ σ 2

for OA, ∝ σ 4 for C20, and C2e, ∝ σ 6 for C3s.

sophisticated in this case than usually for the Ott–Antonsen equa-
tions), and recast the equations in terms of circular cumulants. Some
laborious technical calculations are provided here as well.

A. Fokker–Planck equation

Equation (4) can be recast as

∂wη

∂t
+

∂

∂φ

(

[

�η − ihηe−iφ + ih∗
ηeiφ

]

wη

)

= σ 2 ∂

∂φ

([

sin φ +
1

2
sin 2φ

]

wη

+
∂

∂φ

[(

3

2
+ 2 cos φ +

1

2
cos 2φ

)

wη

])

, (15)

where

�η ≡ η + Js + I(t) + 1, hη ≡
i

2
(η + Js + I(t) − 1).

In the Fourier space, wη(φ, t) = 1
2π

[

1 +
∑∞

m=1(am(t)e−imφ + c.c.)
]

,
where “c.c.” stands for complex conjugate, and Eq. (15) takes the
form

ȧm(η) = m

(

i�ηam + hηam−1 − h∗
ηam+1

+
σ 2

2
am−1 −

σ 2

2
am+1 +

σ 2

4
am−2 −

σ 2

4
am+2

)

− m2σ 2

(

3

2
am + am−1 + am+1 +

1

4
am−2 +

1

4
am+2

)
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or

ȧm(η) = m
(

i�ηam + hηam−1 − h∗
ηam+1

)

− σ 2

(

3

2
m2am +

(

m2 −
m

2

)

am−1

+

(

m2 +
m

2

)

am+1 +
m(m − 1)

4
am−2 +

m(m + 1)

4
am+2

)

.

(16)

Here, by definition, a0 = 1 and a−m = a∗
m .

The net probability density w(φ, t) =
∫

wη(φ, t) g(η)dη, and
the ensemble Kuramoto–Daido46 order parameters

zm =

∫

am(η) g(η)dη.

B. Lorentzian distribution of η

Let us assume smoothness of am(η, t = 0) as functions of η

and construct the analytical continuation of am(η) into the com-
plex plane η. Given the initial conditions {am(η, 0), m = 1, 2, . . . }
are analytical functions of η, the set {am(η, t), m = 1, 2, . . . } gov-
erned by the equation system (16) preserves analyticity. Notice that
for m = 1, the term am−2 = a−1 = a∗

1 would break the analyticity of
system (16) if the coefficient ahead of this term, m(m − 1)/4, were
not zero for m = 1.

Furthermore, specifically with �η = η + Js + I(t) + 1 and
hη = i

2
(η + Js + I(t) − 1), for η = ηr + iηi, Eq. (16) yields

ȧm(ηr + iηi) = −m (ηi − iηr)

(

am +
am−1 + am+1

2

)

+ m
(

i�0am + h0am−1 − h∗
0am+1

)

− σ 2
O(am);

i.e., am(η) tends to (−1)m on the upper arc. [More strictly, for
|η| → ∞, one can neglect the terms without η, which yield the

Ott–Antonsen form of equations. On the Ott–Antonsen mani-
fold, am = am

1 , and one finds ȧ1 =
iη
2
(1 + a1)

2, which yields the
fixed point a1 = −1, and this fixed point is (nonlinearly) attract-
ing within the physical domain |a1| ≤ 1 for Im η ≥ 0 ; for Im
η < 0, the trajectories leave the physical domain and run to infin-
ity.] Hence, for g(η) = 1

π[(η−η0)2+12]
, one can calculate zm via

residues,49–51

zm =

∫

am(η) g(η)dη = am(η0 + i1) .

Thus, one finds from Eq. (16) for the ensemble order parameters,

żm = m

(

(i�η0 − 1)zm + hη0zm−1 − h∗
η0

zm+1

−
1 + σ 2

2
(zm−1 + zm+1)

)

− σ 2

(

3m2

2
zm + m(m − 1)zm−1 + m2zm+1

+
m(m − 1)

4
zm−2 +

m(m + 1)

4
zm+2

)

.

With

hη0 −
1 + σ 2

2
≡ H =

i(η0 + Js + I(t) − 1) − (1 + σ 2)

2
,

these equations read

żm = m
(

(i�η0 − 1)zm + H(zm−1 + zm+1)

)

− σ 2

(

3

2
m2zm + m(m − 1)zm−1 + m2zm+1

+
m(m − 1)

4
zm−2 +

m(m + 1)

4
zm+2

)

. (17)

C. Generating function dynamics

For the generating function F(k, t) =
∑∞

m=0 zm(t) km

m!
, equation system (17) yields ∂

∂t
F(k, t). For term mzm, one can find

k ∂

∂k
F =

∑∞

m=0 mzm
km

m!
; for mzm−1, kF; for mzm+1, k ∂2

∂k2 F =
∑∞

m=0 km(m − 1)zm
km−2

m!
=
∑∞

m=0 mzm+1
km

m!
; for m2zm, k ∂

∂k

(

k ∂

∂k
F
)

; for m(m

− 1)zm−1, k2 ∂

∂k
F =

∑∞

m=0 k2mzm
km−1

m!
=
∑∞

m=0 m(m − 1)zm−1
km

m!
; for m2zm+1, k ∂

∂k

(

k ∂2

∂k2 F
)

=
∑∞

m=0 m(m − 1)2zm
km−1

m!
=
∑∞

m=0 m2zm+1
km

m!
;

for m(m − 1)zm−2, k2F; for m(m + 1)zm+2, k ∂2

∂k2

(

k ∂2

∂k2 F
)

=
∑∞

m=0 m(m − 1)2(m − 2)zm
km−2

m!
=
∑∞

m=0 m(m + 1)zm+2
km

m!
.

Thus,

∂F

∂t
= (i�η0 − 1)k

∂F

∂k
+ H

(

kF + k
∂2F

∂k2

)

− σ 2

(

3

2
k

∂

∂k

(

k
∂F

∂k

)

+ k2 ∂F

∂k
+ k

∂

∂k

(

k
∂2F

∂k2

)

+
1

4

[

k2F + k
∂2

∂k2

(

k
∂2F

∂k2

)])

.

For “circular cumulants,” we introduce 9 = k ∂

∂k
ln F = k

F
∂F
∂k

=
∑∞

m=1 κm(t) km, ∂

∂t
9 = k ∂

∂k

(

1
F

∂F
∂t

)

, and

∂9

∂t
= k

∂

∂k

[

(i�η0 − 1)9 + H

(

k +

(

k ∂

∂k
− 1

)

9 + 92

k

)

− σ 2

{

3

2

(

k
∂9

∂k
+ 92

)

+ k9 +

(

k ∂

∂k
− 1

)2
9 +

(

3
2
k ∂

∂k
− 2

)

92 + 93

k

+
k2

4
+

(

k ∂

∂k
− 1

)2 (
k ∂

∂k
− 2

)

9 +

[

2
(

k ∂

∂k

)2
− 6k ∂

∂k
+ 5

]

92 −
(

k ∂

∂k
9
)2

+
(

2k ∂

∂k
− 4

)

93 + 94

4k2









 . (18)
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With expansion 9 =
∑∞

m=1 κmkm, Eq. (18) yields

κ̇m = m






(i�η0 − 1)κm + H






δ1m + mκm+1 +

∑

m1+m2
=m+1

κm1κm2






− σ 2





3

2
mκm +

3

2

∑

m1+m2
=m

κm1κm2 + (1 − δ1m)κm−1

+ m2κm+1 +
3m − 1

2

∑

m1+m2
=m+1

κm1κm2 +
∑

m1+m2+m3
=m+1

κm1κm2κm3 +
1

4
δ2m +

m(m + 1)2

4
κm+2

+
∑

m1+m2
=m+2

2m2 + 2m + 1 − m1m2

4
κm1κm2 +

m

2

∑

m1+m2+m3
=m+2

κm1κm2κm3 +
1

4

∑

m1+m2+m3
+m4=m+2

κm1κm2κm3κm4












. (19)

Alternatively, with h ≡ hη0 − 1

2
=

i(η0+Js+I(t)−1)−1

2
,

κ̇m = m






(i�η0 − 1)κm + h






δ1m + mκm+1 +

∑

m1+m2
=m+1

κm1κm2






− σ 2







3

2
mκm +

3

2

∑

m1+m2
=m

κm1κm2

+ (1 − δ1m)κm−1 +
δ1m

2
+

(

m2 +
m

2

)

κm+1 +
3m

2

∑

m1+m2
=m+1

κm1κm2 +
∑

m1+m2+m3
=m+1

κm1κm2κm3 +
1

4
δ2m +

m(m + 1)2

4
κm+2

+
∑

m1+m2
=m+2

2m2 + 2m + 1 − m1m2

4
κm1κm2 +

m

2

∑

m1+m2+m3
=m+2

κm1κm2κm3 +
1

4

∑

m1+m2+m3
+m4=m+2

κm1κm2κm3κm4












. (20)

For some considerations, it might be more convenient to rearrange the sums in the latter equation. In terms of κ ′
m ≡ δ1m + κm, i.e., only the

first cumulant is shifted, 1 + κ1 = κ ′
1, one finds a more concise form of equations,

κ̇ ′
m = m






(i�η0 − 1)(κ ′

m − δ1m) + h






mκ ′

m+1 + 2δ1m − 2κ ′
m +

∑

m1+m2
=m+1

κ ′
m1

κ ′
m2






− σ 2







m(m + 1)2

4
κ ′

m+2

+
∑

m1+m2
=m+2

2m2 + 2m + 1 − m1m2

4
κ ′

m1
κ ′

m2
+

m

2

∑

m1+m2+m3
=m+2

κ ′
m1

κ ′
m2

κ ′
m3

+
1

4

∑

m1+m2+m3
+m4=m+2

κ ′
m1

κ ′
m2

κ ′
m3

κ ′
m4












. (21)

Here, the noise-terms are noticeably homogeneous: the sum of their indices in all sums
∑

κ ′
m1

· · · κ ′
mn

is the same, m1 + · · · + mn = m + 2.

This is important for a systematic analysis of geometric smallness hierarchies κ ′
m ∼ εm−1κ ′

1 with various values of small parameter ε, which
often appear for circular cumulant series.36

For the dynamics of the first four cumulants,

κ̇1 = (i�η0 − 1)κ1 + h
(

1 + κ2 + κ2
1

)

− σ 2

(

(1 + κ1)
3

2
+

3

2
(1 + κ1)κ2 + κ3

)

, (22)

κ̇2 = 2(i�η0 − 1)κ2 + 4h (κ3 + κ1κ2) − 2σ 2

(

(1 + κ1)
4

4
+ 3(1 + κ1)

2κ2 + 5(1 + κ1)κ3 +
9

4
κ2

2 +
9

2
κ4

)

, (23)

κ̇3 = 3(i�η0 − 1)κ3 + 3h
(

3κ4 + 2κ1κ3 + κ2
2

)

− 3σ 2

(

(1 + κ1)
3κ2 +

9

2
(1 + κ1)

2κ3 +
9

2
(1 + κ1)κ

2
2 +

21

2
(1 + κ1)κ4 +

19

2
κ2κ3 + 12κ5

)

,

(24)
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κ̇4 = 4(i�η0 − 1)κ4 + 8h (2κ5 + κ1κ4 + κ2κ3)

− 4σ 2

(

(1 + κ1)
4κ3 +

3

2
(1 + κ1)

2κ2
2 + 6(1 + κ1)

2κ4

+ 18(1 + κ1)κ5 + 12(1 + κ1)κ2κ3 + 2κ3
2

+ 8κ2
3 +

33

2
κ2κ4 + 25κ6

)

. (25)

Let us assess the orders of smallness of high-order cumulants for
κ1 ∼ 1 and σ 2 � 1, with the assumption that the reference value of
κm+1 is nonlarger than that of κm. Equation (23) dictates for small κ2

the order of magnitude κ2 ∼ σ 2. Furthermore, κ3 ∼ max{κ2
2 , σ 2κ2};

i.e., κ3 ∼ σ 4. Generally, one can substitute the hierarchy κm

∼ σ 2(m−1) to Eq. (19) and see that it is admissible.
Alternatively, if, due to some reason, κ1 ∼ ε � 1, then, accord-

ing to (23), κ2 ∼ σ 2; according to (24), κ3 ∼ σ 4; generally, κm≥2

∼ σ 2(m−1). Thus, we have the same hierarchy, as for κ1 ∼ 1. This
smallness hierarchy allows us to construct finite-cumulant model
reductions by truncating the infinite chain of cumulant equations.

D. Plain two-cumulant reduction with κ3 = κ4 =0

A plain first order correction to the OA Ansatz for Z = κ1 and
κ2 yields

Ż = (i�η0 − 1)Z + h
(

1 + κ2 + Z2
)

− σ 2

(

1

2
(1 + Z)3 +

3

2
(1 + Z)κ2

)

, (26)

κ̇2 = 2(i�η0 − 1)κ2 + 4hZκ2

− 2σ 2

(

1

4
(1 + Z)4 + 3(1 + Z)2κ2 +

9

4
κ2

2

)

. (27)

The “strong” inaccuracy of this truncation isO(σ 4) for the dynamics
of κ2 [see Eq. (23) and note κ3 ∼ σ 4, κ4 ∼ σ 6]; thus [see Eq. (22)],
the same inaccuracy O(σ 4) is introduced into the dynamics of κ1.
Here, the terms with the factor σ 2κ2 can be omitted due to the hier-
archy κm ∼ σ 2(m−1). However, we keep these terms, as they create
the dissipativity of the dynamics of κ2, which can be lost for homoge-
neous populations (1 = 0) otherwise. For σ 2 � 1, the σ 2κ2-terms
can be omitted as well.

E. Two-cumulant reduction consistent with a

wrapped Gaussian distribution

With κ3 = (3/2)κ2
2 /Z and κ4 = (8/3)κ3

2 /Z2 suggested by the
wrapped Gaussian distribution,35

Ż = (i�η0 − 1)Z + h
(

1 + κ2 + Z2
)

− σ 2

(

1

2
(1 + Z)3 +

3

2
(1 + Z)κ2 +

3

2

κ2
2

Z

)

, (28)

κ̇2 = 2(i�η0 − 1)κ2 + h

(

6
κ2

2

Z
+ 4Zκ2

)

− 2σ 2

(

1

4
(1 + Z)4 + 3(1 + Z)2κ2

+
15

2

κ2
2

Z
+

39

4
κ2

2 + 12
κ3

2

Z2

)

. (29)

F. Two-cumulant reduction with quasi-static

approximation for third cumulant κ3

In Eqs. (22)–(25), one can see that the relaxation dynamics of
κn becomes faster for higher n. Even for regimes of macroscopic
oscillations, the dynamics of higher-order cumulants can be the
dynamics of fast relaxation to the values enslaved by the few lead-
ing cumulants. Hence, one can consider the model reduction where
κ3 is approximately determined from Eq. (24) with quasi-static
assumption and only the leading terms are kept,

0 ≈ 3(i�η0 − 1)κ3 + 3h(r2)
(

2κ1κ3 + κ2
2

)

− 3σ 2

(

(1 + κ1)
3κ2 +

9

2
(1 + κ1)

2κ3 +
9

2
(1 + κ1)κ

2
2

)

,

i.e.,

κ3 ≈
h(r2)κ

2
2 − σ 2

(

(1 + Z)3κ2 + 9
2
(1 + Z)κ2

2

)

−i�η0 + 1 − 2h(r2)Z + 9
2
σ 2(1 + Z)2

, (30)

where in h(r2), the firing rate is calculated with Z, κ2 only [Eq. (9)].
Furthermore, one employs κ3 for calculation of firing rate r3,

πr3(t) − iv3(t) =
1 − Z

1 + Z
+

2κ2

(1 + Z)3
+

6κ2
2

(1 + Z)5
−

4κ3

(1 + Z)4
,

(31)
and substitute it into Eqs. (22) and (23) with κn>3 set to 0,

Ż = (i�η0 − 1)Z + h(r3)
(

1 + κ2 + Z2
)

− σ 2

(

1

2
(1 + Z)3 +

3

2
(1 + Z)κ2 + κ3

)

, (32)

κ̇2 = 2(i�η0 − 1)κ2 + 4h(r3) (κ3 + Zκ2)

− σ 2

(

1

2
(1 + Z)4 + 6(1 + Z)2κ2 + 10(1 + Z)κ3 +

9

2
κ2

2

)

.

(33)

G. Firing rate and the average voltage in the vicinity

of the Ott–Antonsen manifold

Montbrió et al.5 reported the firing rate r(t) and v =
∫

vηg(η)dη

for arbitrary w(φ) = 1
2π

Re[1 + 2Ze−iφ + 2
∑∞

m=2 zme−imφ] [Eq. (B2)
in Ref. 5], r(t) = π−1Re W(t), and v(t) = −Im W(t),

W(t) = 1 − 2Z(t) + 2z2(t) − 2z3(t) + · · · .

We calculate zm (and Z = z1) for the case of enhanced accuracy,
where one approximately accounts for κ3 and decreases inaccuracy
to O(σ 6) (recall, generally κm ∼ σ 2(m−1)). With terms up to σ 6, the
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circular cumulant-generating function 9(k) = κ1k + κ2k
2 + κ3k

3

+ · · · , and, as 9(k) = k∂k ln F(k), one finds ln F = κ1k + κ2
k2

2

+ κ3
k3

3
+ · · · and

F = eln F = eκ1keκ2
k2

2 +κ3
k3

3 +···

= eκ1k

(

1 +
κ2

2
k2 +

κ3

3
k3 +

κ2
2

8
k4 + O(κ3

2 , κ2
3 , κ4)

)

=

∞
∑

m=0

κm
1

km

m!

(

1 +
κ2

2
k2 +

κ3

3
k3 +

κ2
2

8
k4 + · · ·

)

. (34)

Since
∑∞

m=0 κ2κ
m
1

km+2

m!
=
∑∞

m=0 m(m − 1)κ2κ
m−2
1

km

m!
, etc., one finds

zm = κm
1 +

m(m − 1)

2
κ2κ

m−2
1 +

m(m − 1)(m − 2)

3
κ3κ

m−3
1

+
m(m − 1)(m − 2)(m − 3)

8
κ2

2 κ
m−4
1 + · · ·

=

(

1 +
κ2

2

d2

dκ2
1

+
κ3

3

d3

dκ3
1

+
κ2

2

8

d4

dκ4
1

+ · · ·

)

κm
1 . (35)

Hence,

W = 1 − 2Z + 2z2 − 2z3 + · · ·

=

(

1 +
κ2

2

d2

dκ2
1

+
κ3

3

d3

dκ3
1

+
κ2

2

8

d4

dκ4
1

+ · · ·

)

×
(

1 − 2κ1 + 2κ2
1 − 2κ3

1 + · · ·
)

=

(

1 +
κ2

2

d2

dκ2
1

+
κ3

3

d3

dκ3
1

+
κ2

2

8

d4

dκ4
1

+ · · ·

)

1 − κ1

1 + κ1

=
1 − κ1

1 + κ1

+
2κ2

(1 + κ1)
3

−
4κ3

(1 + κ1)
4

+
6κ2

2

(1 + κ1)
5

+ O(σ 6).

(36)

For the first four orders of expansion,

W = W0 + W1 + W2 + W3 + O(σ 8),

W0 =
1 − κ1

1 + κ1

,

W1 =
2κ2

(1 + κ1)
3
,

W2 =
6κ2

2

(1 + κ1)
5

−
4κ3

(1 + κ1)
4
,

W3 =
30κ3

2

(1 + κ1)
7

−
40κ2κ3

(1 + κ1)
6

+
12κ4

(1 + κ1)
5
.

(37)

Specifically, for the Gaussian-friendly closure κ3 = 3
2

κ2
2

κ1
,

W =
1 − κ1

1 + κ1

+
2κ2

(1 + κ1)
3

−
6κ2

2

κ1(1 + κ1)
5

+ O(σ 6), (38)

which is Eq. (10).
In Fig. 5, one can assess the contribution of different terms Wn

into the firing rate for time-independent regimes. As demonstrated
previously,36 the expansion for W should be calculated consistently;
for instance, one should not include the κ2

2 -term without the κ3-term
or the κ3

2 -term without the κ2κ3- and κ4-terms, etc. An inconsistent

FIG. 5. Cumulant expansion for mean field W(t) (37) for J/11/2 = 15, σ 2/13/2 = 0.1 (a) and 1 (b) for the left and right branches of the “exact” solution. Solid lines: W0,
dashed lines:W1, dashed–dotted lines:W2, and dotted lines:W3.
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inclusion of these terms does not enhance the accuracy and, more
importantly, leads to the divergence for a long series.

IV. CONCLUSION

For the population of globally coupled quadratic integrate-
and-fire neurons (QIFs) subject to noise, we have derived the
infinite chain of circular cumulant equations describing the popula-
tion dynamics beyond the Ott–Antonsen or Montbrió–Pazó–Roxin
Ansätze. For the series of circular cumulants, we identify the hierar-
chy of smallness, which allows one to truncate the equation chain.
We have presented the results for several two-cumulant model
reductions with different closures for higher cumulants κ3 and κ4.

We have found that the minimalistic two-cumulant reduction
(11) and (12) with firing rate (9) and the enhanced two-cumulant
reduction (26) and (27) with (9) yield mostly similar accuracy
(Fig. 4). The latter is only slightly more accurate for weak noise and
almost by one order of magnitude more accurate for strong noise.
However, the behavior for moderate and strong noise can be system-
specific, and this result may vary for other networks. The Gaussian
closure for κ3 and κ4 does not increase accuracy compared to the
enhanced two-cumulant reduction. We have also tested the two-
cumulant reduction (32) and (33) with quasi-static approximation
(30) for κ3 and firing rate (31). For time-independent states, this
reduction works as a three-cumulant model; in Fig. 4, the scaling of
its error follows the σ 6-law. The scaling laws of the error for finite-
cumulant reductions in Fig. 4 can also be treated as a confirmation
of the correctness of the derivations, as the mistakes in coefficients of
any terms lower the error order and significantly increase its value.

We have studied the bistability between time-independent
regimes with high and low firing rates in a network of coupled sub-
threshold QIFs (η0 < 0) in the presence of noise. The noise shrinks
the bistability domain (Figs. 1 and 2); the main impact is on the
low firing rate regime, where noise makes the firing events more
frequent and tends to destroy this state.

An important limitation of our accuracy tests is that we consid-
ered only heterogeneous populations with a Lorentzian distribution
of η. The case of a homogeneous population can be generally fea-
tured by a different hierarchy of smallness of κm and a different
accuracy of the same model reductions. Furthermore, the accu-
racy for time-dependent regimes7 can be different as compared to
the case of time-independent regimes, although the dynamics of
relaxation to the regimes in Fig. 1 were correctly captured by the
two-cumulant models.

The approach can be used for a regular derivation of mass
models for other networks of QIFs or theta neurons.
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