ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Пермский государственный университет»

А.А. Алабужев, Т.С. Белозерова, В.К. Хеннер

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Часть II

СПЕЦИАЛЬНЫЕ ФУНКЦИИ ПОЛИНОМЫ ЛЕЖАНДРА

Учебно-методическое пособие

Пермь 2009

УДК 517.58 ББК 22.311 А45

Алабужев А.А.

А45 Методы математической физики. Ч. П. Специальные функции. Полиномы Лежандра: учеб.-метод. пособие / А.А. Алабужев, Т.С. Белозерова, В.К. Хеннер; Перм. ун-т. – Пермь, 2009. – 76 с.

В данном пособии подробно рассматриваются важнейшие специальные функции – полиномы Лежандра. Основное внимание уделяется физическим задачам, решения которых содержат полиномы Лежандра.

Цель пособия – помочь студентам физических и математических специальностей в изучении теории дифференциальных уравнений в частных производных, приводящих к полиномам Лежандра, в определении свойств этих функций и самостоятельном решении задач по моделированию различных физических явлений и процессов. Ил. 15. Библиогр. 12 назв.

> УДК 517.58 ББК 22.311

Печатается по постановлению ученого совета физического факультета Пермского государственного университета

Рецензенты: д.ф.-м.н., зав. лаб. Ин-та механики сплошных сред УрО РАН проф. Ю.Л.Райхер; к.ф.-м.н., доц. кафедры общей физики Перм. гос. тех. ун-та А.В. Перминов

> © Алабужев А.А., Белозерова Т.С., Хеннер В.К., 2009 © Пермский государственный университет, 2009

1. ФУНКЦИИ ЛЕЖАНДРА

Известные функции Лежандра часто используются в различных приложениях. Например, они применяются как базисные функции для разложения в ряд Фурье во многих физических задачах, для решения которых используется сферическая система координат. Колебания сферы, сферическое распределение зарядов, плотность вероятности нахождения электрона в сферическом поле и другие задачи решаются с помощью функций Лежандра. В этом пособии мы рассмотрим функции Лежандра, их свойства и проанализируем несколько примеров на использование таких функций.

1.1. Краевая задача, приводящая к полиномам Лежандра

При решении различных физических задач в *сферической системе координат* часто появляются линейные однородные дифференциальные уравнения второго порядка вида

$$(1-x^2)y''-2xy'+\lambda y=0, -1 \le x \le 1,$$
 (1.1)

где $\lambda > 0$ – действительный параметр. Уравнение (1.1) можно записать в самосопряженном виде:

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{dy}{dx}\right] + \lambda y = 0, \ -1 \le x \le 1.$$
(1.2)

Уравнение (1.2) называется уравнением Лежандра. Подобные уравнения возникают при разделении переменных во многих задачах математической физики, в частности в задаче о распространении тепла внутри шара, в задаче о колебаниях сферических оболочек (капель, пузырей), в краевых задачах о нахождении электрического потенциала для сферической области и т.д. Обычно такие уравнения появляются при разделении переменных в уравнениях, записанных в сферических координатах, где $x = \cos \theta$, θ – меридиональный угол $[0, \pi]$. Таким образом, x изменяется в пределах [-1,1]. Отметим, что для части сферы угол θ изменятся в других пределах. Соответственно изменится и область значений x. Например, для полусферы $\theta \in [0, \pi/2]$ и $x \in [0,1]$. Уравнение (1.2) имеет нетривиальные решения, отвечающие некоторым граничным условиям, только при определенных значениях параметра λ , которые называются *собственными значениями*. Необходимо найти эти собственные значения и соответствующие им нетривиальные решения y(x), которые называются *собственными функциями*.

В пособии [1] рассматривались примеры различных физических проблем, которые формулировались в виде краевых задач, при формулировке которых необходима постановка граничных условий. Для функции y(x), заданной на ограниченном интервале [-1,1], возможны разнообразные условия в точках x = -1 и x = 1. Обычно в физических задачах для уравнения (1.2) ставятся условия Дирихле:

$$y(-1) = 0, y(1) = 0.$$
 (1.3)

Уравнение (1.2) с граничными условиями (1.3) образует задачу Штурма– Лиувилля. Попытаемся найти решение уравнения (1.2) в виде суммы степенного ряда по степеням *x*:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \,. \tag{1.4}$$

Подставляя (1.4) в уравнение (1.2), получаем следующее равенство:

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} - \sum_{n=2}^{\infty} n(n-1)a_n x^n - \sum_{n=2}^{\infty} 2na_n x^n + \lambda \sum_{n=2}^{\infty} a_n x^n = 0.$$
(1.5)

Переобозначим индекс суммирования, $n \Rightarrow n+2$ в первом слагаемом уравнения (1.5):

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - \sum_{n=2}^{\infty} n(n-1)a_nx^n - \sum_{n=2}^{\infty} 2na_nx^n + \lambda \sum_{n=2}^{\infty} a_nx^n = 0.$$
(1.6)

Сгруппируем в (1.6) все слагаемые с $n \ge 2$ под одной суммой, а слагаемые для n = 0 и n = 1 запишем отдельно:

$$(6a_{3}-2a_{1}+\lambda a_{1})x+2a_{2}+\lambda a_{0}+\sum_{n=2}^{\infty}\left[(n+2)(n+1)a_{n+2}-(n^{2}+n-\lambda)a_{n}\right]x^{n}=0.(1.7)$$

Приравняв нулю сумму коэффициентов при каждой степени *x*, составим бесконечную систему уравнений для определения коэффициентов:

$$n=0$$
 $2a_2 + \lambda a_0 = 0,$ (1.8)

$$n = 1 \qquad 6a_3 - 2a_1 + \lambda a_1 = 0, \qquad (1.9)$$

$$n \ge 2 \qquad (n+2)(n+1)a_{n+2} - (n^2 + n - \lambda)a_n = 0. \qquad (1.10)$$

Из равенства (1.8) получаем

$$a_2 = -\frac{\lambda}{2}a_0. \tag{1.11}$$

Используя (1.11), из равенства (1.10) находим

$$a_{4} = \frac{6-\lambda}{3\cdot 4}a_{2} = -\frac{\lambda}{2}\frac{6-\lambda}{3\cdot 4}a_{0} = \frac{-\lambda(6-\lambda)}{4!}a_{0}, \qquad (1.12)$$

$$a_{6} = \frac{20 - \lambda}{5 \cdot 6} a_{4} = \frac{-\lambda (6 - \lambda) (20 - \lambda)}{6!} a_{0}$$
(1.13)

и так далее. Каждый коэффициент с четным индексом a_{2n} умножается на a_0 и зависит от параметров n и λ .

Из уравнения (1.9) получаем

$$a_3 = \frac{2-\lambda}{6}a_1 = \frac{2-\lambda}{3!}a_1.$$
 (1.14)

Аналогично рассмотренному выше случаю коэффициентов с четными индексами a_{2k} для коэффициентов с нечетными индексами из рекуррентной формулы (1.10) находим

$$a_{5} = \frac{12 - \lambda}{4 \cdot 5} a_{3} = \frac{(2 - \lambda)(12 - \lambda)}{5!} a_{1}, \qquad (1.15)$$

$$a_{7} = \frac{30 - \lambda}{6 \cdot 7} a_{5} = \frac{(2 - \lambda)(12 - \lambda)(30 - \lambda)}{7!} a_{1}$$
(1.16)

и так далее. Каждый коэффициент с нечетным индексом a_{2k+1} умножается на a_1 и зависит от параметров n и λ .

Подставим полученные коэффициенты в решение (1.4):

$$y(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 \left(1 - \frac{\lambda}{2} x^2 - \frac{\lambda(6 - \lambda)}{4!} x^4 - \dots \right) + a_1 \left(x + \frac{2 - \lambda}{3!} x^3 + \frac{(2 - \lambda)(12 - \lambda)}{5!} x^5 + \dots \right).$$
(1.17)

В выражении (1.17) две линейно независимые суммы, одна из которых содержит коэффициенты с четными индексами, а другая с нечетными. В результате получается два линейно независимых решения уравнения:

$$y_1(x) = \sum_{n=0}^{\infty} a_{2n} x^{2n} = a_0 \left(1 - \frac{\lambda}{2} x^2 - \frac{\lambda(6 - \lambda)}{4!} x^4 - \dots \right),$$
(1.18)

$$y_{2}(x) = \sum_{n=0}^{\infty} a_{2n+1} x^{2n+1} = a_{1} \left(x + \frac{2-\lambda}{3!} x^{3} + \frac{(2-\lambda)(12-\lambda)}{5!} x^{5} + \dots \right).$$
(1.19)

Таким образом, если $\lambda = 0$, то получаем $a_2 = 0$, $a_4 = 0$ или $a_{2n} = 0$ при $n \ge 1$. Следовательно, $y_1(x) = a_0$, и в случае $a_1 = 0$ получаем, что $y(x) = a_0$. Если $\lambda = 2$, то $a_3 = 0$, $a_5 = 0$ или $a_{2n+1} = 0$ при $n \ge 1$, в результате чего $y_2(x) = a_1 x$ и $y(x) = a_1 x$ при $a_0 = 0$. Если $\lambda = 6$, то $a_2 = -3$, $a_4 = 0$ или $a_{2n} = 0$ при $n \ge 2$. В результате этого $y_1(x) = a_0(1-3x^2)$ и в случае $a_1 = 0$ - $y(x) = a_0(1-3x^2)$. Если $\lambda = 12$, то $a_3 = -5/3$, $a_5 = 0$ или $a_{2n+1} = 0$ при $n \ge 2$, в результате чего $y_2(x) = a_1(x-5x^3/3)$ и $y(x) = a_1(x-5x^3/3)$ при $a_0 = 0$ и т.д.

Из предыдущих рассуждений становится понятно, что существуют *поли*номы (конечные суммы) при $\lambda = n(n+1)$, n = 0,1,2,... Это очевидно из анализа рекуррентного соотношения (1.10), которое можно переписать в виде

$$a_{n+2} = \frac{(n^2 + n - \lambda)}{(n+2)(n+1)} a_n.$$
(1.20)

Бесконечный ряд, составленный по формуле (1.20), расходится: $\lim_{n \to \infty} \left| \frac{a_{n+2}}{a_n} \right| = 1.$

Необходимо оборвать последовательность так, чтобы числитель (1.20) обращался в нуль для некоторого неотрицательного целого индекса n_{\max} : $\lambda = n_{\max} (n_{\max} + 1)$, тогда $a_{N+2} = 0$, в результате чего $a_{N+4} = 0$, $a_{N+6} = 0$, ... и решения (1.18)–(1.19) будут содержать конечное число слагаемых, т. е. будут являться некоторыми полиномами. В дальнейшем мы будем обозначать n_{\max} как n. Таким образом, собственные значения λ принимают неотрицательные целые значения:

$$\lambda = n(n+1). \tag{1.21}$$

Рассмотрим несколько частных случаев для различных значений n (напомним, что решение (1.18) содержит четные степени x, a (1.19) – нечетные):

0) Если n = 0 ((1.18) является полиномом нулевой степени), то $a_0 \neq 0$, $a_2 = 0$ (согласно (1.20)), $a_4 = 0$, ..., собственными значениями будет $\lambda = 0$ (см. (1.21)), а собственными функциями $y_1(x) = a_0$.

1) Если n = 1 ((1.19) является полиномом нулевой степени), то $a_1 \neq 0$, $a_3 = 0$, $a_5 = 0, ..., \lambda = 2$ и $y_2(x) = a_1 x$.

2) Если n=2, то $a_0 \neq 0$, $a_2 = -3$ (см. (1.20)), $a_4 = a_6 = ... = 0$, $\lambda = 6$ и $y_1(x) = a_0(1-3x^2)$.

3) Если n=3, то $a_1 \neq 0$, $a_3 = -5/3$, $a_5 = a_7 = ... = 0$, $\lambda = 12$ и $y_2(x) = a_1(1-5x^2/3)$.

Обозначим полученные полиномы $f_n(x)$. Приведем несколько таких полиномов:

$$f_0(x) = a_0, \ f_1(x) = a_1x, \ f_2(x) = a_0(1 - 3x^2), \ f_3(x) = a_1\left(x - \frac{5}{3}x^3\right).$$
(1.22)

Упражнение. 1. Выписать полиномы $f_n(x)$ при n = 4, 5, 6.

2. Показать путем прямой подстановки, что $f_2(x)$ и $f_3(x)$ является решением уравнения (1.2).

Через полиномы (1.22) решения (1.18)–(1.19) уравнение (1.2) перепишется в виде

$$y_1(x) = \sum_{n=0}^{\infty} f_{2n}(x), \ y_2(x) = \sum_{n=0}^{\infty} f_{2n+1}(x).$$
(1.23)

Каждый из полиномов $f_n(x)$ является решением уравнения (1.2), поэтому каждый такой полином мы можем умножить на произвольную константу c_n . Выберем эти константы таким образом, чтобы $P_n(x) = c_n f_n(x) = 1$ при x = 1. Выпишем несколько первых полиномов $P_n(x)$:

$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2}(3x^2 - 1), P_3(x) = \frac{1}{2}(5x^3 - 3x).$$
 (1.24)

Упражнение. 1. Выписать полиномы $P_n(x)$ при n = 4,5,6,7.

2. Показать прямой подстановкой, что $P_2(x)$ и $P_3(x)$ являются решениями уравнения (1.2).

Полиномы $P_n(x)$ называются *полиномами Лежандра*. На рис. 1.1 показаны 4 первых полинома $P_n(x)$. Отметим, что сами $P_n(x)$ являются четными и нечетными функциями, в зависимости от значения n. В общем случае формула для полинома Лежандра $P_n(x)$ выглядит следующим образом:

$$P_{n} = \frac{1}{2^{n}} \sum_{k=0}^{\infty} \frac{(-1)^{k} (2n-2k)!}{k! (n-k)! (n-2k)!} x^{n-2k} .$$
(1.25)

Рис. 1.1. Четыре первых полинома Лежандра $P_n(x)$

В формуле (1.25) формально стоит бесконечная сумма, но знаменатель существует только при $k \le n$ и $k \le n/2$, в противном случае знаменатель расходится.

Это можно показать следующим образом: множители n-k и n-2k будут отрицательными целыми числами при k > n и k > n/2 соответственно, то $(n-k)! = \Gamma(-|n-k|)$ и $(n-2k)! = \Gamma(-|n-2k|)$, а целые отрицательные числа являются полюсами гамма-функции $\Gamma(x)$, в которых она расходится. Следовательно, формула (1.25) существует только при $k \le n/2$ для четных значений n и $k \le (n-1)/2$ для нечетных n:

$$P_{n} = \frac{1}{2^{n}} \sum_{k=0}^{[n/2]} \frac{(-1)^{k} (2n-2k)!}{k! (n-k)! (n-2k)!} x^{n-2k}, \qquad (1.26)$$

где [n/2] равно n/2, если n – четное, и (n-1)/2, если n – нечетное. Существует другая форма записи общей формулы для полиномов $P_n(x)$:

$$P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} (1 - x^2)^n = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$
(1.27)

Формула (1.27) называется формулой Родрига.

Упражнение. Используя формулу Родрига, показать, что

$$P_n(-x) = (-1)^n P_n(x)$$
 и $P_n(-1) = (-1)^n$.

Отметим еще несколько часто используемых свойств полиномов Лежандра:

$$P_{n}(1) = 1, P_{2n+1}(0) = 0, P_{2n}(0) = (-1)^{n} \frac{1 \cdot 3 \cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot ... \cdot 2n}.$$
(1.28)

Полином Лежандра $P_n(x)$ имеет n действительных некратных корней, которые лежат на интервале -1 < x < 1 (см. рис. 1.1). Нули полиномов $P_n(x)$ и $P_{n+1}(x)$ чередуются с увеличением x.

Подведем итог: решением задачи Штурма–Лиувилля для уравнения (1.2) с граничными условиями, показывающими, что решение уравнения принадлежит интервалу $-1 \le x \le 1$, будут полиномы Лежандра $P_n(x)$, которые являются собственными функциями. Собственными значениями являются $\lambda = n(n+1)$, n = 0,1,2,... Как решение задачи Штурма–Лиувилля, полиномы $P_n(x)$ образуют полный ортогональный базис на интервале [-1,1]. Это важное свойство будет показано ниже.

Напомним, что для $\lambda = n(n+1)$ при n = 0,1,2,... получается решение в виде полиномов в одной из сумм (1.18)–(1.19) и расходящееся решение в другой для $x = \pm 1$. Например, если $\lambda = 0$ (n = 0), то из (1.18) получаем $y_1(x) \sim P_0(x) = 1$, но из (1.19) следует

$$y_2(x) = a_1 \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots \right).$$
(1.29)

Бесконечная сумма (1.29) представляет собой разложение в ряд Маклорена функции $(1/2)\ln[(1+x)/(1-x)]$. Введем обозначение для такого решения:

$$Q_0(x) = \frac{1}{2} \ln \frac{1+x}{1-x} = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots$$
(1.30)

Таким образом, $y_2(x) = a_1 Q_0(x)$. Отметим, что логарифмическая функция $Q_0(x)$ (1.30) расходится при $x = \pm 1$, следовательно, расходится и решение $y_2(x)$ (1.23). Можно записать решение уравнения (1.2) для $\lambda = 0$ (n = 0) через линейную комбинацию $P_0(x)$ и $Q_0(x)$:

$$y(x) = c_1 P_0(x) + c_2 Q_0(x).$$
(1.31)

В полученном решении (1.31) уравнения (1.2) необходимо положить $c_2 = 0$, так как $Q_0(x)$ расходится на границах интервала $-1 \le x \le 1$. Если $\lambda = 2$ (n = 1), решение уравнения (1.2) можно записать в виде

$$y(x) = c_1 P_1(x) + c_2 Q_1(x), \qquad (1.32)$$

где $Q_1(x) = xQ_0(x) - 1$. Однако в этом случае, как следует из решения (1.23),

$$y_1(x) = a_0 \left(1 + x^2 + \frac{x^4}{3} + \frac{x^6}{5} + \frac{x^8}{7} + \dots \right) \sim Q_1(x), \ y_2(x) \sim P_1(x).$$

То есть теперь на границах интервала расходится решение $y_1(x)$. Таким образом, при четных значениях n на границах интервала расходится решение $y_2(x)$, а при нечетных – $y_1(x)$.

При произвольном значении n рекуррентная формула для $Q_n(x)$ будет иметь вид

$$Q_n(x) = P_n(x)Q_0(x) - D_{n-1}(x), \qquad (1.33)$$

где $D_{n-1}(x)$ – некоторый полином порядка n-1. Приведем несколько первых функций $Q_n(x)$:

$$Q_0(x) = \frac{1}{2} \ln \frac{1+x}{1-x}, \ Q_1(x) = \frac{x}{2} \ln \frac{1+x}{1-x} - 1, \ Q_2(x) = \frac{1}{2} P_2(x) \ln \frac{1+x}{1-x} - \frac{3x}{2} \quad .(1.34)$$

На рис. 1.2 показаны графики четырех первых функций $Q_n(x)$.

Рис. 1.2. Три первые функции $Q_n(x)$

В результате общее решение (1.17) уравнения Лежандра (1.2) для *целых неотрицательных* λ можно записать следующим образом:

$$y(x) = c_1 P_n(x) + c_2 Q_n(x), \ n = 0, 1, 2, \dots$$
(1.35)

Логарифмическая функция $Q_n(x)$ (1.33) расходится при $x = \pm 1$, поэтому необходимо положить $c_2 = 0$, чтобы удовлетворить граничным условиям большинства физических задач, в которых решение y(x) должно быть конечным.

1.2. Производящая функция полиномов Лежандра

Рассмотрим сферическую систему координат. Пусть \vec{l} и \vec{r} – радиусвекторы точек *L* и *M*, а θ – угол между этими векторами (см. рис. 1.3).

Рис. 1.3. Геометрия задачи

Расстояние *R* между точками можно выразить с помощью теоремы косинусов:

$$\frac{1}{R} = \frac{1}{\sqrt{l^2 + r^2 - 2lr\cos\theta}} = \begin{cases} \frac{1}{l}\frac{1}{\sqrt{1 + \rho^2 - 2\rho x}}, r < l, \\ \frac{1}{r}\frac{1}{\sqrt{1 + \rho^2 - 2\rho x}}, r > l, \end{cases}$$
(1.36)

где $x = co\theta$, $-1 \le x \le 1$, $\rho = r/l < 1$ при r < l и $\rho = l/r < 1$ при r > l. Отметим, что ρ всегда меньше единицы.

Функция

$$G(\rho, x) = \frac{1}{\sqrt{1 + \rho^2 - 2\rho x}}, \ 0 < \rho < 1, \ -1 \le x \le 1$$
(1.37)

называется *производящей функцией* полиномов Лежандра. Разложим функцию $G(\rho, x)$ (1.37) в ряд Маклорена по степеням ρ :

$$G(\rho, x) = \frac{1}{\sqrt{1 + \rho^{2} - 2\rho x}} = 1 + x\rho - \frac{1}{2}\rho^{2} + \frac{3}{2}x^{2}\rho^{2} - \frac{3}{2}x\rho^{3} + \frac{3}{8}\rho^{4} + \frac{5}{2}x^{3}\rho^{3} - \frac{15}{4}x^{2}\rho^{4} + \frac{15}{8}x\rho^{5} - \frac{5}{16}\rho^{6} + \frac{35}{8}x^{4}\rho^{4} - \frac{35}{4}x^{3}\rho^{5} + \frac{105}{16}x^{2}\rho^{6} + \dots =$$

$$= 1 + x\rho + \left(\frac{3}{2}x^{2} - \frac{1}{2}\right)\rho^{2} + \left(\frac{5}{2}x^{3} - \frac{3}{2}x\right)\rho^{3} + \left(\frac{3}{8} - \frac{15}{4}x^{2} + \frac{35}{8}x^{4}\right)\rho^{4} + \dots =$$

$$= P_{0}(x) + P_{1}(x)\rho + P_{2}(x)\rho^{2} + P_{3}(x)\rho^{3} + P_{4}(x)\rho^{4} + \dots = \sum_{n=0}^{\infty}P_{n}(x)\rho^{n}.$$
(1.38)

Из формулы (1.38) видно, что коэффициентами разложения в ряд функции $G(\rho, x)$ являются полиномы Лежандра $P_n(x)$:

$$P_n(x) = \frac{1}{n!} \frac{\partial^n G(\rho, x)}{\partial \rho^n} \bigg|_{\rho=0}.$$
(1.39)

То есть функция $G(\rho, x)$ «производит» («генерирует») полиномы Лежандра. С помощью производящей функции можно получить формулу Родрига (1.27) (см. прил. I).

Отметим, что из формул (1.36) и (1.38) получается разложение электростатического потенциала (подробнее см. прил. II):

$$\frac{1}{R} = \begin{cases} \frac{1}{l} \sum_{n=0}^{\infty} \left(\frac{r}{l}\right)^n P_n(\cos\theta), r < l, \\ \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{l}{r}\right)^n P_n(\cos\theta), r > l. \end{cases}$$
(1.40)

1.3. Рекуррентные соотношения

С помощью производящей функции $G(\rho, x)$ (1.37) легко получить рекуррентные соотношения для полиномов Лежандра. Продифференцируем $G(\rho, x)$ по ρ :

$$\frac{\partial G(\rho, x)}{\partial \rho} = -\frac{1}{2} \left(1 + \rho^2 - 2\rho x \right)^{-3/2} \left(2\rho - 2x \right) = \frac{x - \rho}{\left(1 + \rho^2 - 2\rho x \right)^{3/2}}$$

Перепишем полученную формулу следующим образом:

$$(1+\rho^2-2\rho x)G_{\rho}-(x-\rho)G=0, \qquad (1.41)$$

где нижней индекс у функции обозначает производную по соответствующей переменной. Подставим в полученное равенство (1.41) сумму (1.38):

$$(1+\rho^{2}-2\rho x)\sum_{n=0}^{\infty}nP_{n}(x)\rho^{n-1}-(x-\rho)\sum_{n=0}^{\infty}P_{n}(x)\rho^{n}=0$$

Раскроем скобки и переобозначим индекс суммирования так, чтобы степень *р* была одинаковой в каждой сумме:

$$\sum_{n=0}^{\infty} (n+1)P_{n+1}(x)\rho^{n} + \sum_{n=2}^{\infty} (n-1)P_{n-1}(x)\rho^{n} - \sum_{n=1}^{\infty} 2nxP_{n}(x)\rho^{n} - \sum_{n=0}^{\infty} xP_{n}(x)\rho^{n} + \sum_{n=1}^{\infty} P_{n-1}(x)\rho^{n} = 0.$$

Сгруппируем все слагаемые для $n \ge 2$ под одной суммой, слагаемые для n = 0 и n = 1 запишем отдельно:

$$P_{1}(x) + 2P_{2}(x)\rho - 3xP_{1}(x)\rho - xP_{0}(x) + P_{0}(x)\rho + \sum_{n=2}^{\infty} ((n+1)P_{n+1}(x) + (n-1)P_{n-1}(x) - 2nxP_{n}(x) - xP_{n}(x) + P_{n-1}(x))\rho^{n} = 0.$$
(1.42)

Функции ρ^n являются линейно независимыми, следовательно, коэффициенты перед такой функцией должны обращаться в нуль для любого n. Таким образом, получаем систему алгебраических уравнений:

$$n = 0 P_1(x) - xP_0(x) = 0; n = 1 2P_2(x) - 3xP_1(x) + P_0(x) = 0;$$

$$n \ge 2 \qquad (n+1)P_{n+1}(x) + (n-1)P_{n-1}(x) - 2nxP_n(x) - xP_n(x) + P_{n-1}(x) = 0.$$

Перепишем полученные формулы следующим образом:

$$P_1(x) = x P_0(x) = x, \qquad (1.43)$$

$$P_{2}(x) = \frac{1}{2} (3xP_{1}(x) - P_{0}(x)) = \frac{1}{2} (3x^{2} - 1), \qquad (1.44)$$

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0.$$
(1.45)

Упражнение. Продифференцировав функцию $G(\rho, x)$ по x и воспользовавшись (1.38) и (1.41), получить следующие рекуррентные соотношения для полиномов Лежандра $P_n(x)$:

$$P'_{n-1}(x) - xP'_{n}(x) + nP_{n}(x) = 0, \qquad (1.46)$$

$$P'_{n}(x) - xP'_{n-1}(x) - nP_{n-1}(x) = 0.$$
(1.47)

1.4. Ортогональность полиномов Лежандра

Полиномы Лежандра являются собственными функциями краевой задачи (1.2)–(1.3). Поскольку эта задача является частным случаем задачи Штурма– Лиувилля, то собственные функции должны быть ортогональны друг другу на интервале [-1,1]:

$$\int_{-1}^{1} P_n(x) P_m(x) dx = 0, \ m \neq n.$$
(1.48)

Покажем, что условие (1.48) выполняется. Так как $P_n(x)$ является решением уравнения Лежандра (1.2) при $\lambda = n(n+1)$, то для любых положительных целых значений n и m это уравнение можно записать в виде

$$\left(\left(1 - x^2 \right) P'_n(x) \right)' + n(n+1) P_n(x) = 0,$$

$$\left(\left(1 - x^2 \right) P'_m(x) \right)' + m(m+1) P_m(x) = 0.$$

Умножим первое уравнение на $P_m(x)$, второе на $P_n(x)$ и вычтем из первого второе при условии, что $m \neq n$:

$$\left(\left(1 - x^2 \right) P'_n(x) \right)' P_m(x) - \left(\left(1 - x^2 \right) P'_m(x) \right)' P_n(x) + \\ + \left(n(n+1) - m(m+1) \right) P_n(x) P_m(x) = 0.$$

Проинтегрируем полученное уравнение по переменной x на интервале [-1,1]:

$$\int_{-1}^{1} \left(\left(1 - x^{2}\right) P_{n}'(x) \right)' P_{m}(x) dx - \int_{-1}^{1} \left(\left(1 - x^{2}\right) P_{m}'(x) \right)' P_{n}(x) dx =$$

$$= \left(m(m+1) - n(n+1) \right) \int_{-1}^{1} P_{n}(x) P_{m}(x) dx.$$
(1.49)

Преобразуем левую часть равенства (1.49), проинтегрировав ее один раз по частям:

$$\int_{-1}^{1} \left(\left(1 - x^{2}\right) P_{n}'(x) \right)' P_{m}(x) dx - \int_{-1}^{1} \left(\left(1 - x^{2}\right) P_{m}'(x) \right)' P_{n}(x) dx =$$

$$= \left(1 - x^{2}\right) P_{n}'(x) P_{m}(x) \Big|_{-1}^{1} - \int_{-1}^{1} \left(1 - x^{2}\right) P_{n}'(x) P_{m}'(x) dx -$$

$$- \left(1 - x^{2}\right) P_{m}'(x) P_{n}(x) \Big|_{-1}^{1} + \int_{-1}^{1} \left(1 - x^{2}\right) P_{n}'(x) P_{m}'(x) dx = 0.$$

Следовательно, при $m \neq n$ левая часть (1.49) обращается в ноль, что доказывает ортогональность полиномов Лежандра (1.48).

Вычислим норму $\|P_n\|$ полиномов Лежандра $P_n(x)$:

$$\left|P_{n}\right|^{2} = \int_{-1}^{1} P_{n}^{2}(x) dx. \qquad (1.50)$$

Это значение потребуется нам в теории рядов Фурье–Лежандра.

Выразим сначала с помощью рекуррентной формулы (1.45) $P_n(x)$ через $P_{n-1}(x)$ и $P_{n-2}(x)$, а затем $P_n(x) - P_{n-1}(x)$ и $P_{n+1}(x)$: $P_n(x) = \frac{2n-1}{n} x P_{n-1}(x) - \frac{n-1}{n} P_{n-2}(x),$

$$xP_n(x) = \frac{n+1}{2n+1}P_{n+1}(x) + \frac{n}{2n+1}P_{n-1}(x).$$

Учитывая условие (1.48) ортогональности полиномов Лежандра и подставляя полученные равенства в (1.50), получим:

$$\begin{split} \|P_n\|^2 &= \frac{1}{n} \int_{-1}^{1} \left((2n-1) x P_{n-1}(x) - (n-1) P_{n-2}(x) \right) P_n(x) dx = \\ &= \frac{2n-1}{n} \int_{-1}^{1} x P_n(x) P_{n-1}(x) dx = \\ &= \frac{2n-1}{n(2n+1)} \int_{-1}^{1} \left((n+1) P_{n+1}(x) + n P_{n-1}(x) \right) P_{n-1}(x) dx = \\ &= \frac{2n-1}{2n+1} \int_{-1}^{1} P_{n-1}^2(x) dx = \frac{2n-1}{2n+1} \|P_{n-1}\|^2. \end{split}$$

Последовательно применяя полученную рекуррентную формулу для понижения порядка полинома в правой части, выразим норму полинома

$$\|P_n\|^2 = \frac{(2n-1)(2n-3)(2n-5)\dots 1}{(2n+1)(2n-1)(2n-3)\dots 3} \|P_0(x)\|^2 = \frac{1}{2n+1} \|P_0\|^2.$$

Так как $\|P_0\|^2 = \int_{-1}^{1} P_0^2(x) dx = \int_{-1}^{1} dx = 2$, то получаем квадрат нормы полинома Ле-

жандра

$$\|P_n\|^2 = \frac{2}{2n+1}.$$
(1.51)

Формулы (1.48) и (1.51) можно объединить в одну:

ſ

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 0, & m \neq n, \\ \frac{2}{2n+1}, & m = n. \end{cases}$$
(1.52)

Упражнение. 1. Доказать, что

$$\int_{0}^{1} P_{n}(x) dx = \begin{cases} 1, & n = 0, \\ 0, & n = 2k, \ k \neq 0, \\ (-1)^{k} \frac{(2k)!}{2^{2k+1}k!(k+1)!}, \ n = 2k+1. \end{cases}$$
(1.53)

2. Доказать, что

$$\int_{-1}^{1} x P_k(x) dx = \begin{cases} 0, & k = 2n+1, n > 0\\ \frac{(-1)^n (2n-2)!}{2^{2n} (n-1)! (n+1)!}, & k = 2n, n > 0. \end{cases}$$
(1.54)

1.5. Присоединенные функции Лежандра $P_n^{(m)}(x)$

Рассмотрим более общий случай дифференциального уравнения (1.1):

$$(1-x^{2})y''-2xy'+\left(\lambda-\frac{m^{2}}{1-x^{2}}\right)y=0, \qquad (1.55)$$

где $\lambda > 0$ – параметр, m – неотрицательное целое число. Уравнение (1.55) можно записать в самосопряженном виде:

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{dy}{dx}\right] + \left(\lambda - \frac{m^2}{1-x^2}\right)y = 0.$$
(1.56)

Уравнение (1.55) называется присоединенным уравнением Лежандра. Как и уравнение (1.2), уравнение (1.55) обычно имеет нетривиальные решения, отвечающие некоторым граничным условиям, только при определенных значениях параметра $\lambda = n(n+1)$, поэтому нужно найти решения y(x).

При решении уравнения (1.56) воспользуемся решением уравнения (1.2). Для этого сделаем замену функции y(x) на новую z(x) в уравнении (1.56):

$$y(x) = (1 - x^2)^{\frac{m}{2}} z(x).$$
(1.57)

Подставляя выражение (1.57) в уравнение (1.56), получаем следующее дифференциальное уравнение:

$$(1-x^{2})z''-2(m+1)xz'+[n(n+1)-m(m+1)]z=0.$$
(1.58)

Если m = 0, то уравнение (1.58) переходит в уравнение (1.1), т. е. его решением является полином $P_n(x)$. Продифференцируем уравнение (1.58) один раз по переменной x:

$$(1-x^{2})(z')''-2((m+1)+1)x(z')'+[n(n+1)-(m+1)(m+2)]z'=0.$$
(1.59)

Однако если в полученном уравнении z' заменить на z и (m+1) на m, то оно переходит в уравнение (1.58). Другими словами, если $P_n(x)$ является решением ем уравнения (1.58) при m = 0, то $P'_n(x)$ является решением (1.59) при m = 1. Продолжая аналогию, получим, что $P''_n(x)$ – решение при m = 2; $P''_n(x)$ – при m = 3 и т.д. В общем случае, при произвольном целом m, $0 \le m \le n$, решением уравнения (1.58) является функция $(d^m/dx^m)P_n(x)$, т. е.

$$z(x) = \frac{d^m}{dx^m} P_n(x), \ 0 \le m \le n.$$
(1.60)

Подставляя (1.60) в выражение (1.57), получим решение уравнения (1.56) (более подробное решение уравнения (1.56) с помощью рядов приведено в прил. III):

$$y(x) = (1 - x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_n(x), \ 0 \le m \le n.$$
(1.61)

Функция (1.61) называется *присоединенными полиномами Лежандра* и обозначается $P_n^{(m)}(x)$ (иногда в литературе используется обозначение $P_n^m(x)$):

$$P_{n}^{(m)}(x) = \left(1 - x^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{dx^{m}} P_{n}(x).$$
(1.62)

Из определения полиномов Лежандра $P_n(x)$ следует, что множитель $d^m P_n(x)/dx^m$ в формуле (1.62) является полиномом порядка n-m. Известно, что для любого полинома $N_k(x)$ целого порядка k выполняется равенство $N_k(-x) = (-1)^k N_k(x)$. Отсюда следует, что

$$P_n^{(m)}(-x) = (-1)^{n-m} P_n^{(m)}(x).$$
(1.63)

Кроме того, $P_n^{(m)}(x) = 0$ при |m| > n, так как при таком соотношении индексов производная $d^m P_n(x)/dx^m$ в формуле (1.63) обращается в нуль. На рис.1.4. приведены графики нескольких присоединенных полиномов Лежандра.

Рис. 1.4. Графики присоединенных полиномов Лежандра $P_2^2(x)$, $P_3^2(x)$, $P_4^2(x)$

Итак, задача разыскания ограниченного на (-1,1) решения уравнения (1.55)имеет следующие собственные числа λ :

$$m(m+1), (m+1)(m+2), (m+2)(m+3), \dots$$
 (1.64)

и соответствующие им собственные функции

$$P_m^{(m)}(x), P_{m+1}^{(m)}(x), P_{m+2}^{(m)}(x), \dots$$
 (1.65)

Можно доказать, что никаких собственных чисел, кроме тех, которые перечислены в последовательности (1.64), данная задача не имеет.

Из общей теории следует, что каждому собственному числу соответствует только одна (с точностью до постоянного множителя) собственная функция; таким образом, функции, входящие в последовательность (1.61), исчерпывают все собственные решения.

Уравнение (1.56) (или (1.55)) не меняется при смене знака m. Следовательно, решение уравнения (1.56) для положительного m является решением и для соответствующего отрицательного m. Таким образом, можно определить $P_n^{(m)}(x)$, $-n \le m \le n$, как равную $P_n^{(|m|)}(x)$. С другой стороны, можно показать, что формула Родрига для присоединенных полиномов Лежандра имеет вид

$$P_n^{(m)}(x) = \frac{1}{2^n n!} (1 - x^2)^{m/2} \frac{d^{n+m}}{dx^{n+m}} (x^2 - 1)^n.$$
(1.66)

Функция (1.66) является решением уравнения (1.56) как для положительного m, так и для отрицательного m. Однако $P_n^{(-m)}(x)$ и $P_n^{(m)}(x)$ пропорциональны друг другу, но не равны:

$$P_n^{(-m)}(x) = (-1)^m \frac{(n-m)!}{(n+m)!} P_n^{(m)}(x).$$
(1.67)

Упражнение. 1) Показать, что

$$\frac{d^{n-m}}{dx^{n-m}} \left(x^2 - 1\right)^n = \frac{(n-m)!}{(n+m)!} \left(x^2 - 1\right)^m \frac{d^{n+m}}{dx^{n+m}} \left(x^2 - 1\right)^n.$$
(1.68)

2) Заменить в (1.66) *т* на *-т* и, используя формулу (1.68), показать, что равенство (1.67) верно.

3) Используя (1.68), показать, что

$$P_n^{(m)}(x) = (-1)^m \frac{(n+m)!}{(n-m)!} \frac{(x^2-1)^{-m/2}}{2^n n!} \frac{d^{n-m}}{dx^{n-m}} (x^2-1)^n.$$

Выпишем несколько первых присоединенных функций Лежандра $P_n^{(1)}(x)$ порядка m = 1:

$$P_{1}^{(1)}(x) = (1 - x^{2})^{\frac{1}{2}} \cdot \left[P_{1}(x)\right]' = (1 - x^{2})^{\frac{1}{2}},$$

$$P_{2}^{(1)}(x) = (1 - x^{2})^{\frac{1}{2}} \cdot \left[P_{2}(x)\right]' = (1 - x^{2})^{\frac{1}{2}} \cdot 3x,$$

$$P_{3}^{(1)}(x) = (1 - x^{2})^{\frac{1}{2}} \cdot \left[P_{3}(x)\right]' = (1 - x^{2})^{\frac{1}{2}} \cdot \left(\frac{15}{2}x^{2} - \frac{3}{2}\right).$$

Несколько первых присоединенных функций Лежандра $P_n^{(2)}(x)$ порядка m = 2 имеет вид:

$$P_2^{(2)}(x) = (1 - x^2) \cdot \left[P_2(x)\right]^* = (1 - x^2) \cdot 3,$$

$$P_3^{(2)}(x) = (1 - x^2) \cdot \left[P_3(x)\right]^* = (1 - x^2) \cdot 15x,$$

$$P_4^{(2)}(x) = (1 - x^2) \cdot \left[P_4(x)\right]^* = (1 - x^2) \cdot \left(\frac{105}{2}x^2 - \frac{15}{2}\right)$$

В окончании приведем несколько основных рекуррентных формул для присоединенных полиномов Лежандра:

$$P_n^{(m+2)}(x) - 2(m+1)\frac{x}{\sqrt{1-x^2}}P_n^{(m+1)}(x) + (n-m)(n+m+1)P_n^{(m)}(x) = 0, \quad (1.69)$$

$$(2n+1)xP_{n}^{(m)}(x) - (n-m+1)P_{n+1}^{(m)}(x) - (n+m)xP_{n-1}^{(m)}(x) = 0, \qquad (1.70)$$

$$\left(x^{2}-1\right)\frac{d}{dx}P_{n}^{(m)}(x)-\left(n-m+1\right)P_{n+1}^{(m)}(x)-\left(n+m\right)xP_{n-1}^{(m)}(x)=0.$$
(1.71)

1.6. Норма и ортогональность присоединенных полиномов Лежандра

Согласно общей теории присоединенные полиномы $P_n^{(m)}(x)$ должны образовывать ортогональную систему. Покажем, что эти полиномы ортогональны и вычислим их норму. Умножая (1.58) на $(1-x^2)^m$, заменяя (m+1) на m и учитывая (1.60), получим

$$\frac{d}{dx}\left[\left(1-x^{2}\right)^{m}\frac{d^{m}P_{n}}{dx^{m}}\right]+\left[n\left(n+1\right)-m\left(m+1\right)\right]\left(1-x^{2}\right)^{m-1}\frac{d^{m-1}P_{n}}{dx^{m-1}}=0.$$
 (1.72)

Введем дополнительную функцию

$$L_{n,k}^{m} = \int_{-1}^{1} P_{n}^{(m)}(x) P_{k}^{(m)}(x) dx = \int_{-1}^{1} (1 - x^{2})^{m} \frac{d^{m} P_{n}(x)}{dx^{m}} \frac{d^{m} P_{k}(x)}{dx^{m}} dx.$$
(1.73)

Проинтегрируем эту функцию один раз по частям:

$$L_{n,k}^{m} = \left[\frac{d^{m-1}P_{k}}{dx^{m-1}}\frac{d^{m}P_{n}}{dx^{m}}\left(1-x^{2}\right)^{m}\right]_{-1}^{1} - \int_{-1}^{1}\frac{d^{m-1}P_{k}(x)}{dx^{m-1}}\frac{d}{dx}\left[\left(1-x^{2}\right)^{m}\frac{d^{m}P_{n}(x)}{dx^{m}}\right]dx.$$

Первое слагаемое обращается в нуль, второе слагаемое с помощью (1.72) можно преобразовать к виду

$$L_{n,k}^{m} = \left[n(n+1) - m(m-1) \right] L_{n,k}^{m-1} = (n+m)(n-m+1) L_{n,k}^{m-1}.$$

Используя полученную рекуррентную формулу, выразим $L_{n,k}^m$ через $L_{n,k}^0$:

$$L_{n,k}^{m} = (n+m)(n+m-1)...(n+1)n...(n-m+1)L_{n,k}^{0} =$$

 $= rac{(n+m)!}{n!}rac{n!}{(n-m)!}L_{n,k}^{0} = rac{(n+m)!}{(n-m)!}L_{n,k}^{0}.$

Выражение $L_{n,k}^0$ определяется формулой (1.52), так как $P_n^{(0)}(x) = P_n(x)$. Окончательно для $L_{n,k}^m$ получаем

$$\int_{-1}^{1} P_{n}^{(m)}(x) P_{k}^{(m)}(x) dx = \begin{cases} 0, & n \neq k, \\ \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}, & n = k. \end{cases}$$
(1.74)

Из (1.74) следует, что присоединенные полиномы ортогональны между собой и квадрат нормы $P_n^{(m)}$ равен

$$\left\|P_{n}^{(m)}\right\|^{2} = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}.$$
(1.75)

1.7. Ряды Фурье–Лежандра

Полиномы Лежандра $P_n(x)$ являются решением задачи Штурма– Лиувилля, т.е. они образуют полный ортогональный базис на интервале [-1,1] с весом r(x)=1. Ряд Фурье для функции f(x), определенной на отрезке [-1,1], разложенной по этой ортогональной системе, называется рядом Фурье– Лежандра функции f(x):

$$f(x) = \sum_{n=0}^{\infty} c_n P_n(x).$$
(1.76)

Очевидно, что благодаря ортогональности полиномов Лежандра коэффициенты разложения c_n будут иметь вид

$$c_{n} = \frac{1}{\int_{-1}^{1} P_{n}^{2}(x) dx^{-1}} \int_{-1}^{1} f(x) P_{n}(x) dx = \frac{1}{\|P_{n}\|^{2}} \int_{-1}^{1} f(x) P_{n}(x) dx = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) dx.$$
(1.77)

Говоря о сходимости ряда (1.76), заметим, что последовательность сумм ряда (1.76) сходится на интервале (-1,1) в среднем к f(x) (с весом x), т.е.

$$\int_{-1}^{1} \left[f(x) - S_n(x) \right]^2 x dx \to 0 \text{ при } n \to \infty.$$
(1.78)

Отметим, что функция f(x) должна быть дважды дифференцируема, т.е. необходимо требовать существование $\int_{-1}^{1} f^2(x) dx$. Свойство (1.78) имеет место для любой функции f(x) из класса кусочно-непрерывных функций, так как ортогональная система полиномов Лежандра $\{P_n(x)\}$ замкнута в этом классе. Другими словами, система функций $\{P_n(x)\}$ полна на интервале [-1,1] (см. обсуждение вопроса о замкнутости системы собственных функций в [1]). Для таких функций f(x) ряд (1.76) сходится абсолютно и равномерно. Приведем без доказательства следующую теорему.

Теорема. Если функция f(x) кусочно-непрерывна на интервале (-1,1), тогда ряд Фурье–Бесселя сходится к f(x) в точках ее непрерывности и к

$$\frac{1}{2} [f(x_0 + 0) + f(x_0 - 0)], \qquad (1.79)$$

если x_0 есть точка простого разрыва функции f(x).

В силу того что система полиномов Лежандра $\{P_n(x)\}$ образует полный ортогональный базис, для любой дважды дифференцируемой функции f(x) имеем

$$\int_{-1}^{1} f^{2}(x) dx = \sum_{n=0}^{\infty} \left\| P_{n} \right\|^{2} c_{n}^{2} = \sum_{n=0}^{\infty} \frac{2}{2n+1} c_{n}^{2}.$$
(1.80)

Это так называемое равенство Парсеваля–Стеклова (или уравнение замкнутости) [6] для рядов Фурье–Лежандра. Очевидно, что в случае конечной суммы мы получим неравенство Бесселя [1,2,6]:

$$\int_{-1}^{1} f^{2}(x) dx \ge \sum_{n=0}^{N} \frac{2}{2n+1} c_{n}^{2}.$$
(1.81)

Рассмотрим несколько примеров разложения функций в ряд Фурье– Лежандра. В этих примерах коэффициенты ряда могут быть найдены аналитически, но в большинстве случаев они вычислялись с помощью программы **Fourier Series**. Ее использование позволяет изменять число слагаемых в частичной сумме ряда и исследовать различные частные случаи. Можно также использовать компьютерные системы аналитических вычислений, например **Maple** или **Mathematica**.

Пример 1. Разложить функцию f(x) = A, A = const в ряд Фурье– Лежандра по полиномам $P_n(x)$ на интервале $-1 \le x \le 1$.

Решение. Ряд будет иметь следующий вид (см. (1.76)):

$$A = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x) + \dots,$$
(1.82)

где коэффициенты разложения c_n вычисляются по формуле (1.77):

$$c_{n} = \frac{1}{\left\|P_{n}^{2}(x)\right\|} \int_{-1}^{1} AP_{n}(x) dx = \frac{2n+1}{2} A \int_{-1}^{1} P_{n}(x) dx.$$
(1.83)

Значения коэффициентов разложения: $c_0 = A$, $c_1 = c_2 = ... = 0$. В окончательном виде, подставляя коэффициенты (1.83) в разложение (1.82), получим разложение $f(x) = c_0 P_0(x) = A$. Ответ становится очевидным, если вспомнить, что $P_0(x) = 1$, т.е. в ряд раскладывается фактически полином Лежандра $P_0(x)$. Поэтому в ряде Фурье–Лежандра отлично от нуля только соответствующее слагаемое.

Пример 2. Разложить функцию f(x) = x в ряд Фурье–Лежандра по полиномам $P_n(x)$ на интервале $-1 \le x \le 1$.

Решение. Представим ряд в виде

$$x = c_0 P_0(x) + c_1 P_1(x) + c_2 P_2(x) + \dots, \qquad (1.84)$$

где коэффициенты разложения c_n :

$$c_{n} = \frac{1}{\left\|P_{n}^{2}(x)\right\|} \int_{-1}^{1} x P_{n}(x) dx = \frac{2n+1}{2} \int_{-1}^{1} x P_{n}(x) dx.$$
(1.85)

Так как $P_1(x) = x$, то в силу ортогональности полиномов Лежандра от нуля отличен только коэффициент c_1 : $c_1 = \frac{3}{2} \int_{-1}^{1} x^2 dx = 1$. Как и в предыдущем случае, в ряд раскладывался один из полиномов Лежандра.

Пример 3. Разложить кусочно-непрерывную функцию f(x) в ряд Фурье– Лежандра по полиномам $P_n(x)$ на интервале $-1 \le x \le 1$.

$$f(x) = \begin{cases} 0, -1 < x < 0 \\ 1, \quad 0 < x < 1 \end{cases}.$$

Решение. Коэффициенты разложения в ряд будут вычисляться по формуле

$$c_{n} = \frac{1}{\left\|P_{n}^{2}(x)\right\|} \int_{-1}^{1} f(x) P_{n}(x) dx = \frac{2n+1}{2} \int_{0}^{1} P_{n}(x) dx.$$
(1.86)

Приведем значения нескольких первых коэффициентов, вычисленных по формуле (1.86):

$$c_{0} = \frac{1}{2} \int_{0}^{1} dx = \frac{1}{2}, \ c_{1} = \frac{3}{2} \int_{0}^{1} x dx = \frac{3}{4},$$

$$c_{2} = \frac{5}{2} \int_{0}^{1} \frac{1}{2} (3x^{2} - 1) = 0, \ c_{3} = \frac{7}{2} \int_{0}^{1} \frac{x}{2} (5x^{2} - 3x) dx = -\frac{7}{16}.$$

В результате получаем следующую функцию:

Рисунок 1.5. Функция f(x) и частичная сумма ряда Фурье–Лежандра (1.87): график функции f(x) – сплошная линия; график ряда – штриховая: а) удерживается 5 слагаемых в сумме ряда (1.87), b) 20, c) 50, d) значение коэффициентов разложения (1.86)

Полученный ряд сходится очень плохо из-за разрыва в точке x = 0. На рис. 1.5 приведены графики функции (1.87) с удержанием различного числа слагаемых.

Пример 4. Разложить функцию $f(x) = \cos(\pi x/2)$ в ряд Фурье–Лежандра по полиномам $P_n(x)$ на интервале $-1 \le x \le 1$.

Решение. Коэффициенты разложения будут вычисляться по формуле

$$c_{n} = \frac{2n+1}{2} \int_{-1}^{1} \cos \frac{\pi x}{x} P_{n}(x) dx. \qquad (1.88)$$

Так как рассматриваемая функция четная относительно x = 0, то отличными от нуля в формуле (1.88) будут коэффициенты только с четным индексом n:

$$c_{0} = \frac{1}{2} \int_{-1}^{1} \cos \frac{\pi x}{2} dx = \frac{2}{\pi}, \ c_{2} = \frac{5}{2} \int_{-1}^{1} \cos \frac{\pi x}{2} \frac{1}{2} (3x^{2} - 1) dx = 10 \frac{\pi^{2} - 12}{\pi^{3}},$$
$$c_{4} = \frac{9}{2} \int_{-1}^{1} \cos \frac{\pi x}{2} \frac{1}{8} (35x^{4} - 30x^{2} + 3) dx = 18 \frac{\pi^{4} - 180\pi^{2} + 1680}{\pi^{5}}.$$

Следовательно,

$$f(x) = c_0 + c_2 P_2(x) + c_4 P_4(x) + \dots$$
(1.89)

На рис. 1.6 построен график функции f(x) и частичной суммы ряда (1.89).

Рис. 1.6. Функция f(x) и частичная сумма ряда Фурье–Лежандра (1.89): график функции f(x) – сплошная линия; график ряда – штриховая: а) удерживается 5 слагаемых в сумме ряда (1.89), b) значение коэффициентов разложения (1.88)

Пример 5. Разложить кусочно-непрерывную функцию f(x) в ряд Фурье– Лежандра по полиномам $P_n(x)$ на интервале $-1 \le x \le 1$.

$$f(x) = \begin{cases} 1+x, -1 \le x < 0\\ 1-x, & 0 \le x \le 1 \end{cases}.$$

Решение. Отметим, что заданная функция f(x) является четной относительно x = 0. Вычислим несколько первых коэффициентов разложения:

$$c_{0} = \frac{1}{2} \left[\int_{-1}^{0} (1+x) dx + \int_{0}^{1} (1-x) dx \right] = \frac{1}{2},$$

$$c_{2} = \frac{5}{2} \left[\int_{-1}^{0} (1+x) P_{2}(x) dx + \int_{0}^{1} (1+x) P_{2}(x) dx \right] = 5 \int_{0}^{1} (1-x) P_{2}(x) dx = -\frac{5}{8},$$

$$c_4 = 9 \int_{0}^{1} (1-x) P_4(x) dx = \frac{3}{16}.$$

На рис. 1.7 показана функция f(x) и частичная сумма ряда Фурье–Лежандра.

Рис. 1.7. Функция f(x) и частичная сумма ряда Фурье–Лежандра: график функции f(x) – сплошная линия; график ряда – штриховая: а) удерживается 10 слагаемых в сумме ряда, b) значение коэффициентов разложения

1.8. Ряды Фурье–Лежандра для присоединенных полиномов Лежандра

Функции $\{P_n^{(m)}(x)\}$ для фиксированного значения верхнего индекса |m| и для всех возможных значений нижнего индекса n

$$P_m^{(m)}(x), P_{m+1}^{(m)}(x), P_{m+2}^{(m)}(x), \dots$$
 (1.90)

образуют полный ортогональный базис функций на интервале [-1,1], так как функции (1.90) являются решением задачи Штурма–Лиувилля. Другими словами, для каждого значения *m* имеет полный набор ортогональных базисных функций (1.90). Таким образом, набор функций (1.90) для любого *m* можно использовать в качестве разложения в ряд по собственным функциям некоторой функции f(x), определенной на интервале [-1,1]:

$$f(x) = \sum_{k=0}^{\infty} c_k P_{m+k}^{(m)}(x).$$
(1.91)

Коэффициенты разложения c_k (k = 0, 1, 2, ...) вычисляются по формуле

$$c_{k} = \frac{1}{\left\|P_{m+k}^{(m)}\right\|^{2}} \int_{-1}^{1} f(x) P_{m+k}^{(m)}(x) dx = \frac{2(m+k)+1}{2} \frac{k!}{(m+k)!} \int_{-1}^{1} f(x) P_{m+k}^{(m)}(x) dx.$$
(1.92)

Как и в случае обычных полиномов Лежандра $P_n(x)$, в случае присоединенных полиномов $P_n^{(m)}(x)$ последовательность сумм ряда (1.91) сходится на интервале (-1,1) в среднем к f(x) (с весом x), т.е.

$$\int_{-1}^{1} [f(x) - S_n(x)]^2 x dx \to 0 \text{ при } n \to \infty.$$
(1.93)

Для кусочно-непрерывной функции теорема (1.79) также справедлива.

Упражнение. Сформулировать равенство Парсеваля–Стеклова для присоединенных полиномов Лежандра

Рассмотрим несколько примеров на разложение функций в ряд Фурье– Лежандра по присоединенным полиномам Лежандра $P_n^{(m)}(x)$.

Пример 1. Разложить функцию $f(x) = x^2$ в ряд Фурье–Лежандра по присоединенным полиномам Лежандра $P_n^{(m)}(x)$ для m = 1.

Решение. Ряд (1.91) запишем в явном виде:

$$x^{2} = \sum_{k=0}^{\infty} c_{k} P_{1+k}^{1}(x) = c_{0} P_{1}^{1}(x) + c_{1} P_{2}^{1}(x) + c_{2} P_{3}^{1}(x) + c_{3} P_{4}^{1}(x) + \dots, \qquad (1.94)$$

где коэффициенты разложения вычисляются по формуле

$$c_{k} = \frac{1}{\left\|P_{k+1}^{1}\right\|^{2}} \int_{-1}^{1} x^{2} P_{k+1}^{1}(x) dx = \frac{2k+3}{2} \frac{k!}{(k+2)!} \int_{-1}^{1} x^{2} P_{k+1}^{1}(x) dx.$$
(1.95)

Так как функция x^2 является четной, то в ряде (1.94) остаются только те слагаемые, которые имеют четный индекс k. Выпишем несколько первых коэффициентов разложения (1.95):

$$c_{0} = \frac{3}{4} \int_{-1}^{1} x^{2} \sqrt{1 - x^{2}} dx = \frac{3\pi}{32},$$

$$c_{2} = \frac{7}{24} \int_{-1}^{1} x^{2} \frac{3}{2} (5x^{2} - 1) \sqrt{1 - x^{2}} dx = \frac{21\pi}{256},$$

$$c_{0} = \frac{11}{60} \int_{-1}^{1} x^{2} \frac{15}{8} (21x^{4} - 14x^{2} + 1) \sqrt{1 - x^{2}} dx = \frac{99\pi}{4096}.$$
(1.96)

На рис. 1.8 представлены графики функции $f(x) = x^2$ и конечной суммы ряда разложения (1.94).

Рис. 1.8. Функция f(x) и частичная сумма ряда Фурье–Лежандра (1.94): график функции f(x) – сплошная линия; график ряда – штриховая: а) удерживается 10 слагаемых в сумме ряда (1.94), b) значение коэффициентов разложения (1.95)

Пример 2. Разложить кусочно-непрерывную функцию f(x) в ряд Фурье– Лежандра по присоединенным полиномам $P_n^{(m)}(x)$ для m = 2 на интервале $-1 \le x \le 1$.

$$f(x) = \begin{cases} 1+x, -1 \le x < 0\\ 1-x, & 0 \le x \le 1 \end{cases}$$

Решение. Распишем ряд (1.91) в явном виде:

$$f(x) = c_0 P_2^2(x) + c_1 P_3^2(x) + c_2 P_4^2(x) + c_3 P_5^2(x) + \dots,$$
(1.97)

где коэффициенты разложения c_k с четными k вычисляются по формуле

$$c_{k} = \frac{2k+1}{2} \frac{k!}{(k+4)!} \left[\int_{-1}^{0} (1+x) P_{k+2}^{2}(x) dx + \int_{0}^{1} (1-x) P_{k+2}^{2}(x) dx \right].$$
(1.98)

В силу четности рассматриваемой функции $c_1 = c_3 = c_5 = ... = 0$. Приведем значения нескольких первых коэффициентов разложения, вычисленных по формуле (1.98):

$$c_{0} = \frac{5}{48} \left[\int_{-1}^{0} (1+x) 3(1-x^{2}) dx + \int_{0}^{1} (1-x) 3(1-x^{2}) dx \right] = \frac{25}{96},$$

$$c_{2} = \frac{1}{80} \left[\int_{-1}^{0} (1+x) \frac{15}{2} (1-x^{2}) (7x^{2}-1) dx + \int_{0}^{1} (1-x) \frac{15}{2} (1-x^{2}) (7x^{2}-1) dx \right] = -\frac{1}{80},$$

$$c_{2} = \frac{13}{3360} \left[\int_{-1}^{0} (1+x) \frac{105}{8} (1-x^{2}) (33x^{4} - 18x^{2} + 1) dx + \int_{0}^{1} (1-x) \frac{105}{8} (1-x^{2}) (33x^{4} - 18x^{2} + 1) dx \right] = \frac{299}{107520}.$$

На рис 1.9 представлены графики рассматриваемой функции f(x) и конечной суммы ряда (1.97).

Рис. 1.9. Функция f(x) и частичная сумма ряда Фурье–Лежандра (1.97): график функции f(x) – сплошная линия; график ряда – штриховая: а) удерживается 10 слагаемых в сумме ряда (1.97), b) значение коэффициентов разложения (1.98)

Пример 3. Разложить функцию $f(x) = 1/(50x^2 - 10x + 2)$ в ряд Фурье-Лежандра по присоединенным полиномам Лежандра $P_n^{(m)}(x)$ для m = 4.

Решение. Распишем ряд (1.91) в явном виде:

$$f(x) = \sum_{k=0}^{\infty} c_k P_{4+k}^4(x) = c_0 P_4^4(x) + c_1 P_5^4(x) + c_2 P_6^4(x) + c_3 P_7^4(x) + \dots, \quad (1.99)$$

где коэффициенты разложения *с*_{*k*} вычисляются по формуле

$$c_{k} = \frac{2k+9}{2} \frac{k!}{(k+8)!} \int_{-1}^{1} \frac{P_{k+4}^{4}(x)}{50x^{2}-10x+2} dx.$$
(1.100)

Приведем численные значения нескольких первых коэффициентов разложения:

 $c_0 = 3.168132791 \cdot 10^{-3}, c_1 = 2.857634094 \cdot 10^{-4}, c_2 = -1.874509119 \cdot 10^{-4}.$

На рис. 1.10 представлены графики рассматриваемой функции f(x) и конечной суммы ряда (1.99).

Рис. 1.10. Функция f(x) и частичная сумма ряда Фурье–Лежандра (1.99): график функции f(x) – сплошная линия; график ряда – штриховая: а) удерживается 10 слагаемых в сумме ряда (1.99), b) значение коэффициентов разложения (1.100)

2. СФЕРИЧЕСКИЕ ФУНКЦИИ

Сферические функции содержат в себе функции Лежандра и часто возникают при решении пространственных уравнений в сферической системе координат. Один из простых способов введения сферических функций – решение уравнения Лапласа для шаровой области методом разделения переменных.

Будем искать решение уравнения Лапласа в сферической системе координат (r, θ, ϕ) , где θ – меридиональный угол, ϕ – полярный угол,

$$\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2} = 0, \quad (2.1)$$

с помощью метода разделения переменных, полагая

$$u(r,\theta,\varphi) = R(r)Y(\theta,\varphi).$$
(2.2)

В ходе решения нас будет интересовать функция от угловых переменных $Y(\theta, \phi)$. Подставляя решение (2.2) в уравнение Лапласа (2.1) и разделяя радиальную и угловые переменные, получим два дифференциальных уравнения (λ – константа разделения переменных):

$$r^{2}R'' + 2rR' - \lambda R = 0, \qquad (2.3)$$

$$\Delta_{\vartheta,\varphi}Y + \lambda Y = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\varphi^2} + \lambda Y = 0.$$
(2.4)

Для функции $Y(\theta, \phi)$ к уравнению (2.4) необходимо добавить следующие условия:

$$Y(\theta, \varphi + 2\pi) = Y(\theta, \varphi), \qquad (2.5)$$

$$|Y(0,\varphi)| < \infty, |Y(\pi,\varphi)| < \infty.$$
 (2.6)

Забегая вперед, отметим, что ограниченные решения уравнения (2.4), обладающие непрерывными производными до второго порядка, называются *сферическими функциями*.

Решение уравнения (2.4) будем также искать с помощью метода разделения переменных:

$$Y(\theta, \varphi) = \Theta(\theta) \Phi(\varphi).$$
(2.7)

Подставим решение (2.7) в уравнение (2.4) и разделим переменные. Пусть μ – постоянная разделения переменных. Функция $\Phi(\phi)$ удовлетворяет уравнению

$$\Phi'' + \mu \Phi = 0 \tag{2.8}$$

и условию периодичности из условия (2.5)

$$\Phi(\varphi + 2\pi) = \Phi(\varphi).$$
(2.9)

Очевидно, что задача для функции $\Phi(\varphi)$ имеет решение лишь при целом $\mu = m^2$ (чтобы удовлетворить условию периодичности (2.9)) и линейнонезависимыми решениями являются $\sin m\varphi$ и $\cos m\varphi$.

Функция $\Theta(\mathcal{G})$ определяется из уравнения

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left(\lambda - \frac{\mu}{\sin^2\theta} \right) \Theta = 0$$
 (2.10)

и условий ограниченности (2.6) при $\theta = 0$ и $\theta = \pi$.

Для простоты решения уравнения (2.10), введя переменную $x = \cos \theta$ и обозначение $\Theta(\vartheta) = y(x)$, получим для y(x) уравнение присоединенных функций Лежандра (1.55):

$$\frac{d}{dt}\left(\left(1-x^{2}\right)\frac{dy}{dx}\right) + \left(\lambda - \frac{m^{2}}{1-x^{2}}\right)y = 0, -1 < x < 1.$$
(2.11)

Выше было показано, что данные уравнения допускают ограниченные решения лишь при $\lambda = n(n+1)$: $y(t) = P_n^{(m)}(\cos \theta) = \Theta(\theta)$, где $m \le n$.

Выпишем полученную систему сферических функций порядка n. Обычно принято приписывать отрицательный верхний индекс тем функциям, которые содержат $\cos m\varphi$, и положительный – которые содержат $\sin m\varphi$. В результате получим:

$$m = 0 \qquad \qquad Y_n^{(0)}(\theta, \varphi) = P_n(\cos \theta);$$

$$m = 1 \qquad Y_n^{(-1)}(\theta, \varphi) = P_n^{(1)}(\cos\theta)\cos\varphi, \ Y_n^{(1)}(\theta, \varphi) = P_n^{(1)}(\cos\theta)\sin\varphi; \qquad (2.12)$$

 $m = k Y_n^{(-k)}(\theta, \varphi) = P_n^{(k)}(\cos \theta) \cos k\varphi, Y_n^{(k)}(\theta, \varphi) = P_n^{(k)}(\cos \theta) \sin k\varphi, k = 1, 2, ..., n.$ Число различных сферических функций $Y_n^{(m)}(\theta, \varphi)$ порядка *n* равно 2n + 1. Линейная комбинация этих 2n + 1 сферических функций (2.12)

$$Y_n(\theta,\varphi) = \sum_{m=0}^n (A_{nm}\cos m\varphi + B_{nm}\sin m\varphi)P_n^{(m)}(\cos\theta)$$
(2.13)

ИЛИ

$$Y_n(\theta,\varphi) = \sum_{m=-n}^n C_{nm} Y_n^{(m)}(\theta,\varphi), \ C_{nm} = \begin{cases} A_{nm}, & m \le 0, \\ B_{nm}, & m > 0 \end{cases}$$
(2.14)

является также сферической функцией и называется сферической гармоникой.

2.1. Ортогональность системы сферических функций

Докажем, что сферические функции, соответствующие различным $\lambda = n(n+1)$, ортогональны друг другу на поверхности сферы S (т.е. $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$). Пусть Y_1 и Y_2 удовлетворяют следующим уравнениям:

$$\Delta_{g,\varphi} Y_1 + \lambda_1 Y_1 = 0, \ \Delta_{\theta,\varphi} Y_2 + \lambda_2 Y_2 = 0,$$
(2.15)

где

$$\Delta_{\theta,\varphi} = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\varphi^2}.$$
 (2.16)

Используя метод интегрирования по частям, легко показать, что имеет место следующее равенство:

$$\iint_{S} Y_{2} \Delta_{\theta, \varphi} Y_{1} d\Omega = -\iint_{S} \left(\frac{\partial Y_{1}}{\partial \theta} \frac{\partial Y_{2}}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial Y_{1}}{\partial \varphi} \frac{\partial Y_{2}}{\partial \varphi} \right) d\Omega, \ d\Omega = \sin \theta d\theta d\varphi.$$
(2.17)

Формулу (2.17) можно переписать через оператор градиента в виде

$$\iint_{S} Y_{2} \Delta Y_{1} d\Omega = - \iint_{S} \nabla Y_{1} \cdot \nabla Y_{2} d\Omega.$$
(2.18)

Меняя местами в формуле (2.17) функции Y_1 и Y_2 и вычитая полученную формулу из (2.17) (с учетом (2.18)), получим

$$I = \iint_{S} \left(Y_2 \Delta_{g,\varphi} Y_1 - Y_1 \Delta_{g,\varphi} Y_2 \right) d\Omega = 0.$$
(2.19)

Формулы (2.17) и (2.19) являются формулами Грина для оператора сферических функций.

Из полученной формулы (2.19) следует ортогональность функций Y_1 и Y_2 . В самом деле, пользуясь уравнением (2.15), получим из (2.19)

$$I = (\lambda_2 - \lambda_1) \iint_S Y_2 Y_1 d\Omega = 0.$$
(2.20)

Если $\lambda_1 \neq \lambda_2$, то из (2.20) получим

Ì

$$\iint_{S} Y_{2} Y_{1} d\Omega = 0 \text{ или } \int_{0}^{2\pi} \int_{0}^{\pi} Y_{1}(\theta, \varphi) Y_{2}(\theta, \varphi) \sin \theta d\theta d\varphi = 0$$
(2.21)

Тем самым доказана ортогональность сферических функций, соответствующая разным λ .

Выше была получена система 2n+1 сферических функций n-порядка для $\lambda = n(n+1)$ (2.12). Докажем, что и эти сферические функции ортогональны между собой.

Пусть $Y_n^{(m)}$ и $Y_n^{(l)}$ – две сферические функции. Интегрируя их произведение и пользуясь формулой (2.13), будем иметь

$$\iint_{S} Y_{n}^{(m)} Y_{n}^{(l)} d\Omega = \int_{0}^{2\pi} \int_{0}^{\pi} Y_{n}^{(m)}(\theta, \varphi) Y_{n}^{(l)} \theta(\theta, \varphi) \sin \theta d\theta d\varphi =$$

$$= \int_{0}^{2\pi} \cos m\varphi \cos l\varphi d\varphi \int_{0}^{\pi} P_{n}^{(m)}(\cos \theta) P_{n}^{(l)}(\cos \theta) \sin \theta d\theta =$$

$$= \int_{0}^{2\pi} \cos m\varphi \cos l\varphi d\varphi \int_{-1}^{1} P_{n}^{(m)}(x) P_{n}^{(l)}(x) dx =$$

$$= \begin{cases} 0 \quad npu \quad l \neq m, \\ \frac{2\pi}{2n+1} (n-k)! & npu \quad l = m = k \neq 0, \\ 2\pi \frac{2}{2n+1} & npu \quad l = m = 0, \end{cases}$$
(2.22)

т.е. сферические функции, определяемые формулой (2.12), образуют ортогональную систему в области $0 \le 9 \le \pi$, $0 \le \varphi \le 2\pi$ и имеют квадрат нормы, равный

$$\left\|Y_{n}^{(m)}\right\|^{2} = \int_{0}^{2\pi} \int_{0}^{\pi} \left(Y_{n}^{(m)}(\theta,\varphi)\right)^{2} \sin\theta d\theta d\varphi = \frac{2}{2n+1} \pi \varepsilon_{m} \frac{(n+m)!}{(n-m)!}, \qquad (2.23)$$

где $\varepsilon_0 = 2$, $\varepsilon_k = 1$ при $k \ge 1$.

Упражнение. Показать справедливость формулы (2.23).

2.2. Разложение в ряд Фурье по сферическим функциям

Предполагая возможность разложения произвольной дважды дифференцируемой функции $f(\theta, \phi)$, определенной в области $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$, в ряд Фурье по сферическим функциям (свойство полноты системы сферических функций и обоснование возможности разложения более подробно смотрите, например, в [2,4,6,8]), получим

$$f(\theta,\varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \left(A_{nm} \cos m\varphi + B_{nm} \sin m\varphi \right) P_n^{(m)} \left(\cos \theta \right), \qquad (2.24)$$

где коэффициенты разложения A_{nm} и B_{nm} определяются по формулам

$$A_{nm} = \frac{1}{\left\|Y_n^{(m)}\right\|^2} \int_{0}^{2\pi} \int_{0}^{\pi} f(\theta, \varphi) P_n^{(m)}(\cos\theta) \cos m\varphi \sin\theta d\theta d\varphi, \qquad (2.25)$$

$$B_{nm} = \frac{1}{\left\|Y_n^{(m)}\right\|^2} \int_{0}^{2\pi} \int_{0}^{\pi} f(\theta, \varphi) P_n^{(m)}(\cos\theta) \sin m\varphi \sin\theta d\theta d\varphi.$$
(2.26)

Квадрат нормы вычисляется по формуле (2.23).

Рассмотрим несколько примеров разложения функции в ряд Фурье по сферическим функциям.

Пример 1. Разложить функцию $f(\varphi, \theta) = a$, a = const в ряд Фурье по сферическим функциям.

Решение. Рассмотрим две различные формы записи сферических функций: $\Upsilon_n^{\pm m} = N_l^m P_n^m (\cos \theta) e^{\pm i m \varphi}$ и $Y_n^m = P_n^m (\cos \theta) \sin m \varphi$, $Y_n^{-m} = P_n^{-m} (\cos \theta) \cos m \varphi$. В первом случае искомый ряд будет иметь вид

$$a = c_{00} \Upsilon_0^0 + c_{10} \Upsilon_1^0 + c_{11} \Upsilon_1^1 + c_{1-1} \Upsilon_1^{-1} \dots, \qquad (2.27)$$

где коэффициенты *с*_{*nm*} вычисляются по формуле

$$c_{nm} = \frac{1}{\left\|\boldsymbol{\Upsilon}_{n}^{m}\right\|^{2}} \int_{0}^{2\pi} \int_{0}^{\pi} a \boldsymbol{\Upsilon}_{n}^{m} \sin\theta d\varphi d\theta = a \int_{0}^{2\pi} \int_{0}^{\pi} \boldsymbol{\Upsilon}_{n}^{m} \sin\theta d\varphi d\theta.$$
(2.28)

Значения коэффициентов вычислить довольно просто:

$$c_{00} = 2a\sqrt{\pi}, c_{nm} = 0, n \ge 1, -n \le m \le n.$$

Во втором случае коэффициенты находится по формуле

$$c_{nm} = \frac{1}{\|Y_n^m\|^2} \int_0^{2\pi} \int_0^{\pi} a Y_n^m \sin\theta d\varphi d\theta = \frac{a(2n+1)(n-m)!}{2\pi\alpha_m(n+m)!} \int_0^{2\pi} \int_0^{\pi} Y_n^m \sin\theta d\varphi d\theta,$$

где $\alpha_0 = 2$, $\alpha_m = 1$ при $m \ge 1$. Вычисленные коэффициенты будут следующими:

$$c_{00} = a, c_{nm} = 0, n \ge 1, -n \le m \le n.$$

Отметим, что различие в коэффициентах разложения связанно с условиями нормировки, сами же ряды совпадают друг с другом.

Пример 2. Разложить функцию $f(\varphi, \theta) = \cos \varphi \sin(2\theta)$ в ряд Фурье по сферическим функциям.

Решение. Рассмотрим две различные формы записи сферических функций: $\Upsilon_n^{\pm m} = N_l^m P_n^{\pm m} (\cos \theta) e^{\pm i m \varphi}$ и $Y_n^m = P_n^m (\cos \theta) \sin m \varphi$, $Y_n^{-m} = P_n^{-m} (\cos \theta) \cos m \varphi$. В первом случае искомый ряд будет иметь вид

$$a = c_{00} \Upsilon_0^0 + c_{10} \Upsilon_1^0 + c_{11} \Upsilon_1^1 + c_{1-1} \Upsilon_1^{-1} \dots, \qquad (2.29)$$

где коэффициенты *с_{nm}* вычисляются по формуле

$$c_{nm} = \int_{0}^{2\pi} \int_{0}^{\pi} \cos\varphi \sin(2\theta) \Upsilon_{n}^{m} \sin\theta d\varphi d\theta. \qquad (2.30)$$

Ниже приведены коэффициенты разложения:

$$c_{00} = 0, \ c_{10} = 0, \ c_{11} = 0, c_{1-1} = 0,$$

$$c_{20} = 0, \ c_{2-1} = -\frac{8\pi}{5}, c_{21} = -\frac{8\pi}{5}, c_{2-2} = 0, c_{22} = 0,$$

$$c_{nm} = 0, \ n \ge 3, \ -n \le m \le n.$$

Во втором случае коэффициенты находится по формуле

$$c_{nm} = \frac{(2n+1)(n-m)!}{2\pi\alpha_m(n+m)!} \int_0^{2\pi} \int_0^{\pi} \cos\varphi \sin(2\theta) Y_n^m \sin\theta d\varphi d\theta,$$

где $\alpha_0 = 2$, $\alpha_m = 1$ при $m \ge 1$. Вычисленные коэффициенты будут следующими:

$$c_{00} = a, c_{10} = 0, c_{11} = 0, c_{1-1} = 0,$$

$$c_{20} = 0, c_{21} = 0, c_{2-1} = 2/3, c_{22} = 0, c_{2-2} = 0,$$

$$c_{nm} = 0, n \ge 3, -n \le m \le n.$$

Пример 3. Разложить функцию $f(\varphi, \theta) = \cos 2\varphi \sin \theta$ в ряд Фурье по сферическим функциям.

Решение. Рассмотрим две различные формы записи сферических функций: $\Upsilon_n^{\pm m} = N_l^m P_n^{\pm m} (\cos \theta) e^{\pm i m \varphi}$ и $Y_n^m = P_n^m (\cos \theta) \sin m \varphi$, $Y_n^{-m} = P_n^{-m} (\cos \theta) \cos m \varphi$.

В первом случае искомый ряд будет иметь вид

$$a = c_{00} \Upsilon_0^0 + c_{10} \Upsilon_1^0 + c_{11} \Upsilon_1^1 + c_{1-1} \Upsilon_1^{-1} \dots, \qquad (2.31)$$

где коэффициенты *с*_{*nm*} вычисляются по формуле

$$c_{nm} = \int_{0}^{2\pi} \int_{0}^{\pi} \cos 2\varphi \sin \theta \Upsilon_{n}^{m} \sin \theta d\varphi d\theta.$$
 (2.32)

Ниже приведены коэффициенты разложения:

$$c_{00} = a, c_{10} = 0, c_{11} = 0, c_{1-1} = 0,$$

$$c_{20} = 0, c_{21} = 0, c_{2-0} = 0, c_{22} = 9\pi^2/8, c_{2-2} = 9\pi^2/8,$$

$$c_{30} = 0, c_{31} = 0, c_{3-1} = 0, c_{32} = 0, c_{3-2} = 0, c_{33} = 0, c_{3-3} = 0,$$

 $c_{40} = 0, c_{41} = 0, c_{4-1} = 0, c_{42} = c_{4-2} = 15\pi^2/32, c_{43} = 0, c_{4-3} = 0, c_{44} = 0, c_{4-4} = 0.$ Во втором случае коэффициенты находится по формуле

$$c_{nm} = \frac{(2n+1)(n-m)!}{2\pi\alpha_m(n+m)!} \int_0^{2\pi} \int_0^{\pi} \cos 2\varphi \sin \theta Y_n^m \sin \theta d\varphi d\theta,$$

где $\alpha_0 = 2$, $\alpha_m = 1$ при $m \ge 1$. Приведем численные значения нескольких коэффициентов:

$$c_{00} = a, c_{10} = 0, c_{11} = 0, c_{1-1} = 0,$$

 $c_{20} = 0, c_{21} = 0, c_{2-0} = 0, c_{22} = 0, c_{2-2} = 45\pi/16,$
 $a_{30} = 0, c_{31} = 0, c_{3-1} = 0, c_{32} = 0, c_{3-2} = 0, c_{33} = 0, c_{3-3} = 0$

 $c_{40} = 0$, $c_{41} = 0$, $c_{4-1} = 0$, $c_{42} = 0$, $c_{4-2} = 135\pi/64$, $c_{43} = 0$, $c_{4-3} = 0$, $c_{44} = 0$, $c_{4-4} = 0$. Очевидно, что от нуля будут отличны только те коэффициенты, которые имеют порядок m = -2, т.е. собственные функции должны содержать $\cos 2\varphi$.

2.3. Примеры решения задач

В приложении IV подробно разобрано несколько объемных физических задач. Рекомендуется ознакомиться с ними перед рассмотрением и решением нижеприведенных задач.

Пример 1. Задача Дирихле для сферы. Пусть дана сфера радиуса r_0 . В силу симметрии удобно решать задачу в сферической системе координат (r, θ, φ) . Поместим начало координат в центр сферы. Рассмотрим две задачи Дирихле для уравнения Лапласа:

- внутренняя задача – $\Delta u = 0$ при $0 \le r \le r_0$, $u|_{r=r_0} = f(\theta, \varphi);$

– внешняя задача – $\Delta u = 0$ при $r \ge r_0$, $u\Big|_{r=r_0} = f(\theta, \varphi)$,

С

где $f = f(\theta, \phi)$ – заданная функция на поверхности сферы.

Оператор Лапласа в сферических координатах имеет следующий вид:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial^2 \varphi}.$$

Решение уравнения Лапласа будем искать с помощью метода разделения переменных:

$$u(r,\theta,\varphi) = R(r)Y(\theta,\varphi), Y(\varphi,\theta) = \Phi(\varphi)\Theta(\theta)$$

Подставляя первую функцию в уравнение Лапласа, выделим отдельно радиальную часть:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) + \frac{n}{r^2}R = 0, \ \Delta_{\theta,\varphi}Y + mY = 0, \qquad (2.33)$$

где $\Delta_{\theta,\varphi} = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial^2\varphi}, n$ – константа разделения перемен-

ных.

Решение первого дифференциального уравнения (2.33) можно представить в виде

$$R = C_1 r^n + C_2 \frac{1}{r^{n+1}}, \qquad (2.34)$$

решением второго (2.33) являются сферические функции:

$$m = 0 Y_n^{(0)} = P_n(\cos\theta);$$

$$m = 1 V^{(-1)} = P^{(1)}(\cos\theta)\cos\theta V^{(1)} = P^{(1)}(\cos\theta)$$

$$m = 1 \qquad Y_n^{(-1)} = P_n^{(1)} (\cos \theta) \cos \varphi, \ Y_n^{(1)} = P_n^{(1)} (\cos \theta) \sin \varphi;$$

$$m = k \qquad Y_n^{(-k)} = P_n^{(k)} (\cos \theta) \cos k\varphi, \ Y_n^{(k)} = P_n^{(k)} (\cos \theta) \sin k\varphi,$$

где $k = 1, 2, 3, ..., n$.

Чтобы решение задачи Дирихле было конечным при любых значениях r, необходимо для внутренней задачи в решении (2.34) положить $C_2 = 0$, а для внешней $C_1 = 0$. Таким образом, решение задачи Дирихле для сферы имеет вид:

.....

- внутренняя задача -
$$u(r, \theta, \varphi) = \sum_{n=0}^{\infty} \left(\frac{r}{r_0}\right)^n Y_n(\theta, \varphi), r \le r_0;$$
 (2.35)

- внешняя задача -
$$u(r,\theta,\varphi) = \sum_{n=0}^{\infty} \left(\frac{r_0}{r}\right)^{n+1} Y_n(\theta,\varphi), r \ge r_0,$$
 (2.36)

где $Y_n(\theta, \varphi) = \sum_{m=-n}^{n} (A_{mn} \cos m\varphi + B_{mn} \sin m\varphi) P_n^{(m)}(\cos \theta)$. Неизвестные коэффициенты A_{mn} и B_{mn} находятся из разложения функции $f(\varphi, \theta)$ в ряд Фурье по сферическим функциям:

$$A_{mn} = \frac{1}{\left\|Y_n^{(m)}\right\|^2} \int_0^{2\pi} \int_0^{\pi} f(\theta, \varphi) P_n^{(m)}(\cos\theta) \cos m\varphi \sin\theta d\varphi d\theta, \qquad (2.37)$$

$$B_{mn} = \frac{1}{\left\|Y_n^{(m)}\right\|^2} \int_{0}^{2\pi} \int_{0}^{\pi} f(\theta, \varphi) P_n^{(m)}(\cos\theta) \sin m\varphi \sin\theta d\varphi d\theta.$$
(2.38)

Пример 2. Рассмотрим вторую краевую задачу для уравнения Лапласа для сферы. Пусть дана сфера радиуса r_0 . В силу симметрии удобно решать задачу в сферической системе координат (r, θ, φ) . Поместим начало координат в центр сферы. Рассмотрим внутреннюю и внешнюю краевые задачи:

- внутренняя задача - $\Delta u = 0$ при $0 \le r \le r_0$, $\frac{\partial u}{\partial \vec{n}}\Big|_{r=r_0} = f(\theta, \varphi);$

- внешняя задача - $\Delta u = 0$ при $r \ge r_0$, $\frac{\partial u}{\partial \vec{n}}\Big|_{r=r_0} = f(\theta, \varphi)$.

Решение задач будем искать методом разделения переменных, аналогично рассмотренной выше первой краевой задаче. Чтобы удовлетворить граничному условию, необходимо, чтобы выполнялось следующее условие (условие разрешимости):

$$\int_{0}^{2\pi}\int_{0}^{\pi}f(\theta,\varphi)\sin\theta d\varphi d\theta=0.$$

Отметим, что в случае деформируемой сферы производная по нормали совпадает с производной по радиальной координате. Тогда решение для внутренней задачи можно записать в виде

$$u(r,\theta,\varphi) = \sum_{n=1}^{\infty} \sum_{m=0}^{n} \frac{r^n}{nr_0^{n-1}} (A_{mn}\cos m\varphi + B_{mn}\sin m\varphi) P_n^{(m)}(\cos\theta) + C,$$

где C – некоторая константа. Для определения этой константы C необходимо поставить дополнительное условие на значение функции $u(r, \theta, \phi)$ на границе сферы.

Решение внешней краевой задачи для сферы имеет вид

$$u(r,\theta,\varphi) = \sum_{n=1}^{\infty} \sum_{m=0}^{n} \frac{r_0^{n+2}}{(n+1)r^{n+1}} (A_{mn}\cos m\varphi + B_{mn}\sin m\varphi) P_n^{(m)}(\cos\theta) + C.$$

Коэффициенты разложения вычисляются по формулам (2.37), (2.38).

Пример 3. Рассмотрим первую внутреннюю краевую задачу для уравнения Лапласа для четверти шара: $0 \le r \le r_0$, $0 \le \theta \le \pi/2$, $0 \le \varphi \le \pi$. В силу симметрии удобно решать задачу в сферической системе координат (r, θ, φ) . Поместим начало координат в центр шара. На поверхности должны выполнятся следующие граничные условия:

$$u|_{r=r_0} = f(\theta, \varphi), \ u|_{\varphi=0,\pi} = 0, \ u|_{\theta=0,\frac{\pi}{2}} = 0.$$

Как и в рассмотренных выше задачах, решение будем искать методом разделения переменных. Оно будет иметь следующий вид:

$$u(r,\theta,\varphi) = \sum_{n=1}^{\infty} \sum_{m=1}^{n} A_{mn} \left(\frac{r}{r_0}\right)^{2n+1} P_{2n+1}^{(2m)}(\cos\theta) \sin 2m\varphi + \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} B_{mn} \left(\frac{r}{r_0}\right)^{2n} P_{2n}^{(2m+1)}(\cos\theta) \sin(2m+1)\varphi.$$

Коэффициенты A_{mn} и B_{mn} находятся из разложения в ряд Фурье функции $f(\theta, \varphi)$:
$$A_{mn} = \frac{\int_{0}^{\pi} \int_{0}^{\pi/2} f(\theta, \varphi) P_{2n+1}^{(2m)}(\cos \theta) \sin 2m\varphi \sin \theta d\varphi d\theta}{\left\| P_{2n+1}^{(2m)}(\cos \theta) \sin 2m\varphi \right\|^2},$$

$$B_{mn} = \frac{\int_{0}^{\pi} \int_{0}^{\pi/2} f(\theta, \varphi) P_{2n}^{(2m+1)}(\cos \theta) \sin (2m+1)\varphi \sin \theta d\varphi d\theta}{\left\| P_{2n}^{(2m+1)}(\cos \theta) \sin (2m+1)\varphi \right\|^2}$$

Число *т* должно быть целым, чтобы удовлетворить условию периодичности по азимутальному углу φ . Нулевым граничным условиям для угла φ на границах интервала $0 \le \varphi \le \pi$ при целых *m* удовлетворяет функция $\sin m\varphi$. Появление двух сумм с функциями sin четного 2m и нечетного 2m+1 аргумента очевидно: необходимо, чтобы присоединенные полиномы Лежандра $P_n^{(m)}(\cos\theta)$ были равны нулю на концах интервала $0 \le \theta \le \pi/2$ при произвольном φ , что возможно только в случае разной четности порядка n и степени mприсоединенного полинома Лежандра $P_n^{(m)}(\cos\theta)$. Напомним, что четность $P_n^{(m)}(\cos\theta)$ относительно точки $\cos\theta = 0$ (экваториальная плоскость, $\theta = \pi/2$) зависит от четности суммы n + m. Таким образом, нулевым граничным условиям для угла θ удовлетворят только нечетные $P_n^{(m)}(\cos\theta)$.

Пример 4. Рассмотрим первую внутреннюю краевую задачу для уравнения Лапласа для четверти шара: $0 \le r \le r_0$, $0 \le \theta \le \pi$, $0 \le \varphi \le \pi/2$. В силу симметрии удобно решать задачу в сферической системе координат (r, θ, φ) . Поместим начало координат в центр шара. На поверхности должны выполнятся следующие граничные условия:

$$u|_{r=r_0} = f(\varphi, \theta), \ u|_{\varphi=0,\frac{\pi}{2}} = 0, \ u|_{\theta=0,\pi} = 0.$$

Как и в рассмотренных выше задачах, решение будем искать методом разделения переменных. Оно будет иметь следующий вид:

$$u(r,\theta,\varphi) = \sum_{n=1}^{\infty} \sum_{m=1}^{n} A_{mn} \left(\frac{r}{r_0}\right)^{2n} P_{2n}^{(2m)}(\cos\theta) \sin 2m\varphi.$$

Коэффициенты A_{mn} находятся из разложения в ряд Фурье функции $f(\theta, \varphi)$:

$$A_{mn} = \frac{1}{\left\|P_{2n}^{(2m)}(\cos\theta)\sin 2m\varphi\right\|^2} \int_{0}^{\pi/2} \int_{0}^{\pi} f(\varphi,\theta) P_{2n}^{(2m)}(\cos\theta)\sin 2m\varphi\sin\theta d\theta d\varphi.$$

В данном примере для удовлетворения граничным условиям необходимо оставить только функцию sin с четным аргументом.

Пример 5. Рассмотрим первую внутреннюю краевую задачу для уравнения Лапласа для 1/8 шара: $0 \le r \le r_0$, $0 \le \theta \le \pi/2$, $0 \le \varphi \le \pi/2$. В силу симметрии удобно решать задачу в сферической системе координат (r, θ, φ) . Поместим

начало координат в центр шара. На поверхности должны выполнятся следующие граничные условия:

$$u|_{r=r_0} = f(\theta, \varphi), \ u|_{\varphi=0,\frac{\pi}{2}} = 0, \ u|_{\theta=0,\frac{\pi}{2}} = 0$$

Как и в рассмотренных выше задачах, решение будем искать методом разделения переменных. Оно будет иметь следующий вид:

$$u(r,\theta,\varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} A_{mn} \left(\frac{r}{r_{0}}\right)^{2n+1} \sin 2m\varphi P_{2n+1}^{(2m)}(\cos\theta),$$
$$A_{mn} = \frac{1}{\left\|P_{2n+1}^{(2m)}(\cos\theta)\sin 2m\varphi\right\|^{2}} \int_{0}^{\pi/2} \int_{0}^{\pi/2} f(\varphi,\theta) P_{2n+1}^{(2m)}(\cos\theta)\sin 2m\varphi\sin\theta d\varphi d\theta$$

Пример 6. Найти напряженность электростатического поля внутри и вне сферы радиуса $r = r_0$, верхняя половина которой заряжена до потенциала v_1 , а нижняя – до v_2 .

Напряженность электрического поля \vec{E} связана с потенциалом v известным соотношением:

$$\vec{E} = \nabla \upsilon \,. \tag{2.39}$$

Задачу будем решать в сферических координатах (r, θ, φ) , расположив начало в центре отсчета сферы и направив полярную ось перпендикулярно плоскости разделения полусфер. Понятно, что поставленная задача представляет собой задачу Дирихле для уравнения Лапласа (см. пример 1) со следующим граничным условием:

$$\nu\Big|_{r=r_0} = \begin{cases} \nu_1, 0 \le \theta \le \pi/2, \\ \nu_2, \pi/2 \le \theta \le \pi, \end{cases}$$
(2.40)

где $v = v(r, \theta, \phi)$ – потенциал в точке (r, θ, ϕ) . Толщиной стенок сферы пренебрегаем.

Решение этой задачи для внутренней и внешней области рассматривалось в примере 1 (разложения (2.35) и (2.36) соответственно):

- внутренняя задача -
$$v(r, \theta, \varphi) = \sum_{n=0}^{\infty} \left(\frac{r}{r_0}\right)^n Y_n(\theta, \varphi), r \le r_0,$$
 (2.41)

- внешняя задача -
$$v(r, \theta, \varphi) = \sum_{n=0}^{\infty} \left(\frac{r_0}{r}\right)^{n+1} Y_n(\theta, \varphi), r \ge r_0.$$
 (2.42)

Очевидно, что электрическое поле является осесимметричным и не зависит от координаты φ . Таким образом, коэффициенты C_{mn} в формуле (2.14) будут равны нулю $C_{mn} = 0$ для $m \neq 0$. Следовательно, сферические функции $Y_n(\theta, \varphi)$ (2.14) будут иметь вид

$$Y_n(\theta,\varphi) = c_n P_n(\cos\theta).$$
(2.43)

Решения (2.41) и (2.42) с учетом (2.43) будут иметь вид

$$v = \sum_{n=0}^{\infty} a_n \left(\frac{r}{r_0}\right)^n P_n(\cos\theta), \ r \le r_0,$$
(2.44)

$$\upsilon = \sum_{n=0}^{\infty} a_n \left(\frac{r_0}{r}\right)^{n+1} P_n\left(\cos\theta\right), \ r \ge r_0.$$
(2.45)

Сравнивая полученные решения (2.44), (2.45) с аналогичными решениями (2.35), (2.36), на основании формул (2.37)–(2.38) найдем коэффициенты разложения a_n :

$$a_n = \frac{2n+1}{2} \int_0^{\pi} f(\theta) P_n(\cos\theta) \sin\theta d\theta, \qquad (2.46)$$

где $f(\theta)$ – значение функции v на поверхности сферы. Подставив в (2.46) граничное условие (2.40), получим:

$$a_{n} = \frac{2n+1}{2} \left(\int_{0}^{\pi/2} v_{1} P_{n}(\cos\theta) \sin\theta d\theta + \int_{\pi/2}^{\pi} v_{2} P_{n}(\cos\theta) \sin\theta d\theta \right) =$$

$$= \frac{2n+1}{2} \left(v_{1} \int_{0}^{1} P_{n}(x) dx + v_{2} \int_{-1}^{0} P_{n}(x) dx \right).$$
(2.47)

Напомним, что полиномы Лежандра имеют одинаковую четность с индексом n, т.е.

$$P_n(-x)=(-1)^n P_n(x).$$

Тогда

$$a_{n} = \frac{2n+1}{2} \left(v_{1} + \left(-1\right)^{n} v_{2} \right) \int_{0}^{1} P_{n}(x) dx.$$

Из полученной формулы вытекает, что

$$a_{0} = \frac{1}{2}(\nu_{1} + \nu_{2}), \ a_{2k} = 0, \ a_{2k+1} = \frac{\nu_{1} - \nu_{2}}{2^{2k+1}}(-1)^{k}(4k+1)\frac{(2k)!}{k!(k+1)!}.$$
(2.48)

Подставляя найденные значения коэффициентов a_n в решения (2.44) и (2.45), найдем искомый потенциал электростатического поля. Подставляя полученные решения в формулу (2.39), найдем напряженность электрического поля. **Пример 7.** Малые колебания вращающейся струны [8]. Рассмотрим колебания однородной струны длиной l, закрепленной одним своим концом на неподвижной опоре и могущей свободно вращаться около точки опоры. Если мы пренебрежем силой тяжести и сопротивлением воздуха, то положение равновесия струны будет отображаться прямой линией, вращающейся в плоскости, проходящей через точку опоры с постоянной угловой скоростью ω . Если струну вывести из положения равновесия, то она будет колебаться вокруг этого положения. При изучении колебаний будем рассматривать только смещения u струны от положения равновесия. Смещение u является функцией времени t и расстоянием от точки опоры x; при этом будем считать, что u перпендикулярно плоскости вращения струны.

В случае вращения струны необходимо найти ускорение точки, представляемое суммой двух векторов: одного постоянного длины x и другого (перпендикулярного к x) переменной длины u. Оба эти вектора вращаются с угловой скоростью ω .

Так как u параллельно оси вращения (перпендикулярно к плоскости вращения), то ускорение этой точки будет $-\omega^2 x$ вдоль оси Ox и u_{tt} (нижний индекс обозначает дифференцирование по соответствующей переменной) вдоль оси Ou. Сила, действующая на элемент длины dx струны на расстоянии x от неподвижной опоры, равна

$$\rho\omega^2 x dx, \qquad (2.49)$$

где ρ – плотность струны.

Натяжение в точке *x* будет определяться суммой сил, действующих на все элементы струны от точки *x* до наружного ее конца:

$$T(x) = \int_{x}^{l} \rho \omega^{2} y dy = \frac{\rho \omega^{2}}{2} (l^{2} - x^{2}). \qquad (2.50)$$

Отсюда нетрудно получить и уравнение свободных колебаний вращающейся струны:

$$\rho u_{tt} dx = \left[\frac{\rho \omega^2}{2} (l^2 - x^2) u_x \right]_{x+dx} - \left[\frac{\rho \omega^2}{2} (l^2 - x^2) u_x \right]_x =$$

$$= \frac{\rho \omega^2}{2} \frac{\partial}{\partial x} \left[\frac{\rho \omega^2}{2} (l^2 - x^2) u_x \right] dx \qquad (2.51)$$

ИЛИ

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial}{\partial x} \left(l^2 - x^2 \right) \frac{\partial u}{\partial x}, \ c^2 = \frac{\omega^2}{2}.$$
(2.52)

К уравнению (2.52) необходимо добавить граничные и начальные условия: $u|_{x=0} = 0, |u||_{x=l} < \infty, u|_{t=0} = \phi(x), u_t|_{t=0} = \psi(x).$ (2.53)

Будем искать решение уравнения (2.52) с помощью метода разделения переменных:

$$u(x,t) = X(x)T(t).$$
 (2.54)

Подставляя решение (2.54) в уравнение (2.52) и разделяя переменные, получим:

$$\frac{T''(t)}{c^2 T(t)} = \frac{1}{X(x)} \frac{d}{dx} (l^2 - x^2) X'(x).$$
(2.55)

Штрихи обозначают производную по аргументу функции. Введя константу $-\lambda$ разделения переменных, получим два дифференциальных уравнения:

$$T''(t) + c^2 \lambda T(t) = 0,$$
 (2.56)

$$\frac{d}{dx}(l^2 - x^2)X'(x) + \lambda X(x) = 0.$$
(2.57)

Введем новую переменную $x = l\zeta$ ($0 \le x \le l$, $0 \le \zeta \le 1$), преобразуем уравнение (2.57) к виду

$$\frac{d}{d\zeta} \left[\left(1^2 - \zeta^2 \right) \frac{dX}{d\zeta} \right] + \lambda X = 0.$$
(2.58)

Полученное уравнение (2.58) является уравнением Лежандра (1.2). Решение этого уравнения конечно, если $\lambda = n(n+1)$, где n – целое положительное число. Решение уравнения:

$$X(\zeta) = P_n(\zeta)$$
или $X(x) = P_n(x/l).$ (2.59)

Удовлетворяя граничному условию (2.53), получим

$$P_n(0) = 0. (2.60)$$

Это возможно, если индекс у полиномов Лежандра нечетный, т.е. n = 2k - 1, где k – целое положительно число. Поэтому собственными числами будут $\lambda = 2k(2k - 1)$, а собственными функциями

$$X_{k}(x) = P_{2k-1}(x), \qquad (2.61)$$

которые образуют ортогональную систему на отрезке [0, l].

Для известных собственных чисел λ решение уравнения (2.56) можно записать следующим образом:

$$T_k(t) = a_k \cos \omega_k t + b_k \sin \omega_k t, \qquad (2.62)$$

где $\omega_k^2 = \lambda c^2 = 2k(2k-1)c^2$ – квадрат частоты *k*-ой гармоники.

Подставляя найденные функции (2.61) и (2.62) в решение (2.54), получим:

$$u(x,t) = \sum_{k=1}^{\infty} u_k(x,t) = \sum_{k=1}^{\infty} T_k(t) X_k(x) =$$

= $\sum_{k=1}^{\infty} (a_k \cos \omega_k t + b_k \sin \omega_k t) P_{2k-1}(x/l).$ (2.63)

Коэффициенты разложения a_k и b_k находятся из требования выполнения начальных условий (2.53):

$$u(x,0) = \sum_{k=1}^{\infty} a_k P_{2k-1}(x/l) = \phi(x), \qquad (2.64)$$

$$u_t(x,0) = \sum_{k=1}^{\infty} c \omega_k b_k P_{2k-1}(x/l) = \psi(x).$$
(2.65)

Раскладывая в ряд Фурье–Лежандра функции $\phi(x)$ и $\psi(x)$ и приравнивая слагаемые для одинаковых собственных функций P_{2k-1} , определим коэффициенты разложения:

$$a_{k} = \frac{4k-1}{l} \int_{0}^{l} \phi(x) P_{2k-1}(x/l) dx, \ b_{k} = \frac{4k-1}{c\omega_{k}l} \int_{0}^{l} \psi(x) P_{2k-1}(x/l) dx.$$
(2.66)

Из выражения для $\omega_k = c\sqrt{2k(2k-1)} = \omega\sqrt{k(2k-1)}$ следует, что частоты колебаний зависят от угловой скорости ω и не зависят от длины струны и ее плотности (если плотность постоянная). При увеличении длины или плотности увеличивается масса струны, которая стремится понизить частоту. При этом также увеличивается натяжение, что вызывает повышение частоты.

Пример 8. Обтекание шара потоком несжимаемой жидкости. Допустим, что имеется потенциальное (невихревое) течение несжимаемой жидкости, которое обтекает шар радиусом r_0 . Пусть вдали от шара скорость течения жидкости будет v_0 . Вблизи шара скорость жидкости меняется, и потенциал этой скорости, который и надо определить в ходе решения задачи, будем обозначать u.

В силу симметрии задачи решение будем искать в сферической системе координат (r, θ, φ) , начало отсчета которой поместим в центр шара, а полярную ось z направим вдоль течения жидкости. Тогда вдали от шара скорость течения жидкости будет $v_0 \vec{e}_z$. Вблизи шара скорость течения можно записать как $\vec{v} = v_0 \vec{e}_z + \nabla u$. От угла φ ничего не зависит, движение будем считать установившимся и не зависящим от времени.

Потенциал скорости несжимаемой жидкости удовлетворяет уравнению Лапласа ($\nabla \cdot \nabla (v_0 e_z + \nabla u) = \nabla^2 u(r, \theta) = 0$), поэтому решение можно записать в виде ряда (см. пример 1 – внешняя краевая задача для сферы):

$$u(r,\theta) = \sum_{n=0}^{\infty} a_n \left(\frac{r_0}{r}\right)^{n+1} P_n(\cos\theta).$$
(2.67)

Коэффициенты a_k необходимо найти из условий, имеющих место на границе жидкой среды. Из условия непрерывности нормальной компоненты скорости на поверхности шара следует, что $\vec{nv} = 0$, т.е.

$$\mathbf{v}_{0}\vec{e}_{z}\vec{n}+\nabla_{n}\boldsymbol{u}=\mathbf{v}_{0}\cos\theta+\frac{\partial\boldsymbol{u}}{\partial\boldsymbol{r}}=0, \qquad (2.68)$$

откуда вытекает, что

$$\left. \frac{\partial u}{\partial r} \right|_{r=r_0} = -\nu_0 \cos \theta \,. \tag{2.69}$$

Подставляя решение (2.67) в граничное условие (2.69), найдем, что

$$-\frac{1}{r_0}\sum_{n=0}^{\infty}(n+1)a_nP_n(\cos\theta) = -v_0\cos\theta.$$
(2.70)

Но это равенство справедливо только в том случае, если коэффициенты a_n будут выбраны следующим образом (напомним, что $P_1(x) = x$):

$$a_0 = 0, \ a_1 = -\frac{1}{2}r_0\nu_0, \ a_2 = a_3 = \dots = 0.$$
 (2.71)

Подставляя полученные коэффициенты (2.71) в решение (2.67), найдем искомый потенциал скорости, полученный Стоксом:

$$u = \frac{\nu_0 r_0^3}{2r^2} \cos\theta \,. \tag{2.72}$$

2.4. Задачи

1. Используя рекуррентную формулу (1.20), показать, что коэффициенты для x^n (для больших показателей n) в $P_n(x)$ будут

$$a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!}$$

2. Получить формулу Родрига, используя решение предыдущей задачи. *Указание*: Показать, что $z = (x^2 - 1)^n$ удовлетворяет уравнению

$$(1-x^2)\frac{d^{n+2}z}{dx^{n+2}}-2x\frac{d^{n+1}z}{dx^{n+1}}+n(n+1)\frac{d^nz}{dx^n}=0,$$

которое означает, что $d^n z/dx^n$ является решением уравнения Лежандра. Следовательно, это решение с точностью до постоянного множителя является полиномом Лежандра $P_n(x)$: $\frac{d^n z}{dx^n} = cP_n(x)$. Сравнивая коэффициенты при высоких степенях в обоих частях равенства, можно получить равенство $\frac{d^n}{dx^n}(x^2-1)^n = 2^n n!P_n(x)$, которое является формулой Родрига.

3. Так называемые *лестничные* (также называемые *повышающий* и *понижающий*) *операторы* очень важны при рассмотрении задач квантовой механики. Для этих операторов используются следующие рекуррентные формулы:

$$P_{n-1}(x) = xP_n(x) + \frac{1-x^2}{n}P'_n(x), \ n \ge 1,$$
(2.73)

$$P_{n+1}(x) = xP_n(x) - \frac{1-x^2}{n+1}P'_n(x), \ n \ge 0.$$
(2.74)

Покажите, что эти формулы верны.

4. Интеграл $I_{nm} = \int_{-1}^{1} x P_n(x) P_m(x) dx$ часто используется при решении раз-

личных задач. Показать, что

$$I_{nm} = \frac{2(n+1)}{(2n+1)(2n+3)} \delta_{m,n+1} + \frac{2n}{(2n+1)(2n-1)} \delta_{m,n-1}.$$
 (2.75)

5. Покажите, что верно следующее равенство:

$$\int_{-1}^{1} x P_n(x) P'_n(x) dx = \frac{2n}{2n+1}.$$
(2.76)

6. Проинтегрируйте рекуррентное соотношение по частям (1.46) и покажите, что верным является равенство

$$I_n = \int_0^1 P_n(x) dx = \frac{P_{n-1}(0)}{n+1}.$$
 (2.77)

(2)

Данный интеграл часто встречается при решении задач. С помощью формулы (1.20) для нечетных *п* можно найти, что

$$I_{n} = (-1)^{(n-1)/2} \frac{(n-1)!}{2^{n} \left(\frac{n+1}{2}\right)! \left(\frac{n-1}{2}\right)!} = \frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{3+n}{2}\right)\Gamma\left(\frac{2-n}{2}\right)}.$$
(2.78)

Напомним, что $I_1 = 1$, а $I_n = 0$ для четных n.

7. Уравнение Лежандра можно представить как решение задачи на собственные значения $Ly(x) = \lambda y(x)$, где $L = -\frac{d}{dx} \left[(1 - x^2) \frac{dy}{dx} \right]$. Показать, что оператор L – эрмитов на интервале [-1,1], т.е.

$$\int_{-1}^{1} P_m(x) L P_n(x) dx = \int_{-1}^{1} P_n(x) L P_m(x) dx.$$
(2.79)

В задачах 8–18 разложите функцию f(x) в ряд Фурье–Лежандра. Постройте график функции и сумму ряда с удержанием нескольких слагаемых.

8.
$$f(x) = 2x - 1$$
.
9. $f(x) = 1 - x^2$.
10. $f(x) = \begin{cases} -1, & -1 < x < 0, \\ 1, & 0 < x < 1. \end{cases}$
11. $f(x) = \begin{cases} 0, & -1 < x < 0, \\ x, & 0 < x < 1. \end{cases}$
12. $f(x) = \arcsin x$.
13. $f(x) = \begin{cases} 0, & -1 < x < 0, \\ \sqrt{1 - x}, & 0 < x < 1 \end{cases}$
14. $f(x) = \sin \pi x$.
15. $f(x) = e^x$.
16. $f(x) = \sin^2 x$.
17. $f(x) = \cos \pi x - \sin \pi x$.
18. $f(x) = \cos \alpha x$ (*a*=const).
19. Herefore were programmed by the second second

19. Необходимо разложить функцию f(x), определенную на интервале [a,b], в ряд по полиномам Лежандра. Показать, что необходимо сделать преобразование u = (2x - a - b) / (b - a), которое отображает функцию на интервал [-1,1].

20. Разложить функцию $f(x) = 1 - x^2/4$, $-2 \le x \le 2$ в ряд по полиномам Лежандра.

21–32. В каждой задаче 8-18 разложите функцию f(x) в ряд Фурье– Лежандра по полиномам $P_n^m(x)$ на $-1 \le x \le 1$ для m = 1 и m = 2. Постройте график функции и сумму ряда с удержанием нескольких слагаемых.

В каждой задаче 33–35 разложить функцию $f(\theta, \varphi)$ в ряд по сферическим гармоникам $Y_l^m(\theta, \varphi)$. Найти коэффициент A и собственные значения l и m, которые требуются для разложения.

33. $f(\theta, \varphi) = A \sin \theta \cos \varphi$.

Ответ: $A = \sqrt{3/(4\pi)}$. Объясните, почему l = 1.

34. $f(\theta, \varphi) = A(3\cos^2 \theta - 1 + \sin 2\theta \cdot \cos \varphi)$. Объясните, почему l = 2.

35. $f(\theta, \varphi) = A \sin \theta \cos 2\varphi$. Объясните, почему в этом случае сходимость хуже, чем в задачах 33 и 34. *Указание*: сравните с разложением функции sin *x* по косинусам на интервале $[0, 2\pi]$.

36. Показать, что общее решение уравнения Лапласа

$$\Delta u = 0 \tag{2.80}$$

внутри сферы $r \le a$ может быть представлено в виде

$$u(r,\theta,\varphi) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} (A_{nm} \cos m\varphi + B_{nm} \cos m\varphi) r^n P_n^m(\cos \theta).$$
(2.81)

Указание: разделите переменные $u(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$ и покажите, что общее решение для функции R(r) будет

$$R(r) = C_1 r^n + C_2 \frac{1}{r^{n+1}}.$$
(2.82)

Заметим, что функция $\Phi_m(\varphi)$ может быть записана двумя способами: как комплексная $\Phi_m(\varphi) \sim e^{im\varphi}$ для $m = 0, \pm 1, \pm 2, ...$ и как действительная, в виде комбинации $\cos m\varphi$ и $\sin m\varphi$ для m = 0, 1, 2, ... Для последнего случая записано решение (2.81).

37. Найти общее решение уравнения Лапласа (2.80) вне сферы $r \ge a$. Ответ: $u(r, \theta, \varphi) = \sum_{n=0}^{\infty} a^{n+1} r^{-n-1} Y_n(\theta, \varphi), r \ge a$.

38. Решить задачу Дирихле с граничными условиями $u(a, \theta, \phi) = f(\theta, \phi)$ для уравнения Лапласа (2.80) внутри и вне сферы (найти коэффициенты разложения A_{lm} и B_{lm}).

Ответ: Коэффициенты разложения одинаковы для обоих случаев и имеют вид

$$A_{mn} = \frac{1}{\left\|Y_n^{(m)}\right\|^2} \int_{0}^{2\pi} \int_{0}^{\pi} f(\varphi, \theta) P_n^{(m)}(\cos\theta) \cos m\varphi \sin\theta d\varphi d\theta, \qquad (2.83)$$

$$B_{mn} = \frac{1}{\left\|Y_n^{(m)}\right\|^2} \int_0^{2\pi} \int_0^{\pi} f(\varphi, \theta) P_n^{(m)}(\cos\theta) \sin m\varphi \sin\theta d\varphi d\theta.$$
(2.84)

39. Решить задачу 38 для граничных условий Неймана $\frac{\partial u(r,\theta,\varphi)}{\partial r}\Big|_{r=a} = f(\theta,\varphi).$

Ответ: а) для внутренней задачи

$$u(r,\varphi,\theta) = \sum_{n=1}^{\infty} \sum_{m=0}^{n} \frac{r^n}{nr_0^{n-1}} \left(A_{mn} \cos m\varphi + B_{mn} \sin m\varphi \right) P_n^m \left(\cos \theta \right) + C; \qquad (2.85)$$

b) для внешней задачи

$$u(r,\varphi,\theta) = \sum_{n=1}^{\infty} \sum_{m=0}^{n} \frac{r_0^{n+2}}{(n+1)r^{n+1}} (A_{mn}\cos m\varphi + B_{mn}\sin m\varphi) P_n^m(\cos\theta) + C. \quad (2.86)$$

Здесь C – произвольная константа и функция $f(\theta, \varphi)$ удовлетворяет условию

$$\int_{0}^{2\pi} \int_{0}^{\pi} f(\varphi, \theta) \sin \theta d\varphi d\theta = 0.$$
(2.87)

40. Найти разложение по сферическим функциям поверхностных зарядов, индуцированных на идеально проводящей заземленной сфере точечным зарядом, находящимся

а) внутри сферы,

b) вне сферы.

Указание: Пусть заряд находится в точке $r = r_0$, $\theta = 0$, где (r, θ) – сферические координаты. Следует воспользоваться разложением (подробнее см. прил. II)

$$\frac{1}{R} = \begin{cases} \frac{1}{r_0} \sum_{n=0}^{\infty} \left(\frac{r}{r_0}\right)^n P_n(\cos\theta), & r < r_0, \\ \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r_0}{r}\right)^n P_n(\cos\theta), & r > r_0, \end{cases}$$
(2.88)

где R – расстояние до точки наблюдения (r, θ) от заряда $(r_0, 0)$. Полный потенциал системы представим в виде суммы потенциалов точечного заряда (первое слагаемое в решении) и сферы (второе слагаемое):

$$u(r,\theta) = \frac{e}{R} + \sum_{n=0}^{\infty} A_n \left(\frac{r}{a}\right)^n P_n(\cos\theta), \quad r < a,$$
(2.89)

$$u(r,\theta) = \frac{e}{R} + \sum_{n=0}^{\infty} B_n \left(\frac{a}{r}\right)^{n+1} P_n(\cos\theta), \quad r > a.$$
(2.90)

Здесь a – радиус сферы. Коэффициенты A_n и B_n определяются из граничного условия $u|_{r=a} = 0$:

$$A_n = -e \frac{a^n}{r_0^{n+1}}, \ B_n = -e \frac{r_0^n}{a^{n+1}}.$$
 (2.91)

Плотность поверхностных зарядов находится по формуле

$$\sigma = -\frac{1}{4\pi} \left(\frac{\partial u}{\partial r} \right)_{r=a}.$$
(2.92)

При этом в случае а) надо пользоваться формулой (2.90), а в случае b) – формулой (2.89).

Ответ: a) если $r_0 < a$, то потенциал

$$u(r,\theta) = \begin{cases} e \sum_{n=0}^{\infty} \left(\frac{r^{n}}{r_{0}^{n+1}} - \frac{r_{0}^{n}r^{n}}{a^{2n+1}} \right) P_{n}(\cos\theta), & r < r_{0}, \\ e \sum_{n=0}^{\infty} \left(\frac{r_{0}^{n}}{r^{n+1}} - \frac{r_{0}^{n}r^{n}}{a^{2n+1}} \right) P_{n}(\cos\theta), & r > r_{0}, \end{cases}$$
(2.93)

а плотность поверхностных зарядов на сфере

$$\sigma = -\frac{e}{4\pi} \sum_{n=0}^{\infty} (2n+1) \frac{r_0^n}{a^{n+2}} P_n(\cos\theta).$$
 (2.94)

b) Если $r_0 > a$, то потенциал

$$u(r,\theta) = \begin{cases} e \sum_{n=0}^{\infty} \left(\frac{r^{n}}{r_{0}^{n+1}} - \frac{a^{2n+1}}{r_{0}^{n+1}r^{n+1}} \right) P_{n}(\cos\theta), & r < r_{0}, \\ e \sum_{n=0}^{\infty} \left(\frac{r_{0}^{n}}{r^{n+1}} - \frac{a^{2n+1}}{r_{0}^{n+1}r^{n+1}} \right) P_{n}(\cos\theta), & r > r_{0}, \end{cases}$$
(2.95)

а плотность поверхностных зарядов на сфере

$$\sigma = -\frac{e}{4\pi} \sum_{n=0}^{\infty} (2n+1) \frac{a^{n-1}}{r_0^{n+1}} P_n(\cos\theta).$$
(2.96)

41. Решить задачу об остывании шара радиуса r_0 , если на его поверхности происходит конвективный теплообмен со средой, температура которой равна нулю. Начальная температура шара

$$u\big|_{t=0} = f(r,\theta,\varphi), \ 0 \le r < r_0, \ 0 \le \theta \le \pi, \ 0 \le \varphi \le 2\pi.$$
(2.97)

Ответ: Решением краевой задачи

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \varphi}{\partial r^2} \right), \quad (2.98)$$

$$\left\lfloor \frac{\partial u}{\partial r} + hu \right\rfloor_{r=r_0} = 0, \ u \big|_{t=0} = f(r,\theta,\varphi)$$
(2.99)

является

$$u(r,\theta,\varphi,t) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{n} \exp\left(-\left(\frac{a\mu_m^{(n)}}{r_0}\right)^2 t\right) \frac{1}{\sqrt{r}} J_{n+\frac{1}{2}}\left(\frac{\mu_m^{(n)}r}{r_0}\right) \times P_n^{(k)} (\cos\theta) (A_{mnk}\cos k\varphi + B_{mnk}\sin k\varphi),$$
(2.100)

где $\mu_m^{(n)}$ – положительные корни уравнения

$$\mu_{m}^{(n)}J_{n+\frac{1}{2}}'(\mu_{m}^{(n)}) + \left(r_{0}h - \frac{1}{2}\right)J_{n+\frac{1}{2}}(\mu_{m}^{(n)}) = 0.$$
(2.101)

Коэффициенты разложения в решении (2.100) вычисляются по следующим формулам:

$$A_{mnk} = \frac{\int_{0}^{r_0} \int_{0}^{\pi 2\pi} f(r,\theta,\varphi) r^{\frac{3}{2}} J_{n+\frac{1}{2}} \left(\frac{\mu_m^{(n)} r}{r_0} \right) \sin \theta P_n^{(k)} (\cos \theta) \cos k\varphi dr d\theta d\varphi}{\varepsilon_k \frac{\pi r_0^2 (n+k)!}{(2n+1)(n-k)!} \left(1 + \frac{(r_0 h+n)(r_0 h-n-1)}{\mu_m^{(n)2}} \right) J_{n+\frac{1}{2}}^2 \left(\mu_m^{(n)} \right)}, \quad (2.102)$$

$$B_{mnk} = \frac{\int_{0}^{r_0} \int_{0}^{\pi 2\pi} f(r,\theta,\varphi) r^{\frac{3}{2}} J_{n+\frac{1}{2}} \left(\frac{\mu_m^{(n)} r}{r_0} \right) \sin \theta P_n^{(k)} (\cos \theta) \sin k\varphi dr d\theta d\varphi}{\varepsilon_k \frac{\pi r_0^2 (n+k)!}{(2n+1)(n-k)!} \left(1 + \frac{(r_0 h+n)(r_0 h-n-1)}{\mu_m^{(n)2}} \right) J_{n+\frac{1}{2}}^2 \left(\mu_m^{(n)} \right)} \quad .(2.103)$$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Алабужев А.А. Методы математической физики. Ч. І. Специальные функции. Цилиндрические функции/ А.А. Алабужев, Т.С. Белозерова, В.К. Хеннер; Перм. ун-т. Пермь, 2007.

2. *Тихонов А.Н.* Уравнения математической физики/ А.Н. Тихонов, А.А. Самарский. М.: Наука, 1972.

3. *Будак Б.М.* Сборник задач по математической физике/ Б.М. Будак, А.А. Самарский, А.Н. Тихонов. М.: Наука, 1980.

4. *Очан Ю.С.* Методы математической физики/ Ю.С. Очан. М.: Высш. шк., 1965.

5. *Очан Ю.С.* Сборник задач по методам математической физики/ Ю.С. Очан. М.: Высш. шк., 1973.

6. Владимиров В.С. Уравнения математической физики/ В.С. Владимиров. М.: Наука, 1985.

7. *Сборник* задач по уравнениям математической физики/ под ред. В.С. Владимирова. М.: Физматлит, 2001.

8. *Кошляков Н.С.* Уравнения в частных производных математической физики/ Н.С. Кошляков, Э.Б. Глинер, М.М. Смирнов. М.: Высш. шк., 1970.

9. Справочник по специальным функциям/ под ред. М. Абрамовица и М. Стигана. М.: Наука, 1979.

10. *Люк Ю*. Специальные математические функции и их аппроксимации/ Ю. Люк. М.: Наука, 1980.

11. *Арсенин В.Я*. Методы математической физики и специальные функции/ В.Я. Арсенин. М.: Наука, 1974.

12. *Никифоров А.Ф.* Специальные функции математической физики/ А.Ф. Никифоров, В.Б. Уваров. М.: Наука, 1984.

49

Формула Родрига

Функция

$$G(\rho, x) = \frac{1}{\sqrt{1 + \rho^2 - 2\rho x}}, \ 0 < \rho < 1, \ -1 \le x \le 1$$
(I.1)

называется производящей функцией полиномов Лежандра. Разложим функцию $G(\rho, x)$ (I.1) в ряд Маклорена по степеням ρ :

$$G(\rho, x) = \frac{1}{\sqrt{1 + \rho^2 - 2\rho x}} = 1 + x\rho - \frac{1}{2}\rho^2 + \frac{3}{2}x^2\rho^2 - \frac{3}{2}x\rho^3 + \frac{3}{8}\rho^4 + \frac{5}{2}x^3\rho^3 - \frac{15}{4}x^2\rho^4 + \frac{15}{8}x\rho^5 - \frac{5}{16}\rho^6 + \frac{35}{8}x^4\rho^4 - \frac{35}{4}x^3\rho^5 + \frac{105}{16}x^2\rho^6 + \dots = 1 + x\rho + \left(\frac{3}{2}x^2 - \frac{1}{2}\right)\rho^2 + \left(\frac{5}{2}x^3 - \frac{3}{2}x\right)\rho^3 + \left(\frac{3}{8} - \frac{15}{4}x^2 + \frac{35}{8}x^4\right)\rho^4 + \dots = (I.2)$$
$$= P_0(x) + P_1(x)\rho + P_2(x)\rho^2 + P_3(x)\rho^3 + P_4(x)\rho^4 + \dots = \sum_{n=0}^{\infty} P_n(x)\rho^n.$$

Из формулы (I.2) видно, что коэффициентами разложения в ряд функции $G(\rho, x)$ являются полиномы Лежандра $P_n(x)$. Из теоремы Коши об интегрировании функций аналитичных в некоторой односвязной области и (I.2) следует, что

$$P_n(x) = \frac{1}{n!} \frac{\partial^n G(\rho, x)}{\partial \rho^n} \bigg|_{\rho=0} = \frac{1}{2\pi i} \int_C \frac{G(z, x)}{z^{n+1}} dz, \qquad (I.3)$$

где C – любой замкнутый контур в плоскости комплексного переменного $z = \zeta + i\xi$, содержащий точку z = 0. Пусть $\sqrt{1 + 2z^2 - 2xz} = 1 - zy$, тогда $z = 2(y - x)/(y^2 - 1)$, $dz = 2(1 - zy) dy/(y^2 - 1)$, $G(z, x) dz = 2dy/(y^2 - 1)$. Переходя от переменной z к y в формуле (I.3), получим следующее выражение:

$$P_{n}(x) = \frac{1}{2^{n+1}\pi i} \int_{D} \frac{\left(y^{2}-1\right)^{n}}{\left(y-x\right)^{n+1}} dy, \qquad (I.4)$$

где D – любой контур, окружающий точку y = x. Из теории вычетов известно, что

$$\frac{1}{2\pi i} \int_{D} \frac{\left(y^2 - 1\right)^n}{y - x} dy = \left(x^2 - 1\right)^n,$$
(I.5)

и, воспользовавшись формулой для производной

$$\frac{d^{n}}{dx^{n}} \int_{D} \frac{\left(y^{2}-1\right)^{n}}{y-x} dy = n! \int_{D} \frac{\left(y^{2}-1\right)^{n}}{\left(y-x\right)^{n+1}} dy, \qquad (I.6)$$

получаем из (І.4) формулу Родрига (1.27) для полиномов Лежандра $P_n(x)$:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$
(I.7)

Разложение по мультиполям

Рассмотрим электрический заряд q. Пусть положение этого заряда определяется радиус-вектором \vec{l} (см рис. II.1).

Рис. II.1. Электрическое поле на расстоянии \vec{r} благодаря заряду q

Электростатический потенциал в точке с радиусом вектором \vec{r} определяется формулой

$$\varphi = \frac{q}{4\pi\varepsilon_0 \left| \vec{r} - \vec{l} \right|},\tag{II.1}$$

 ε_0 – коэффициент диэлектрической проницаемости вакуума. Используя теорему косинусов, модуль в знаменателе (II.1) можно записать в следующем виде:

$$|r-l| = \sqrt{r^2 + l^2 - 2rl\cos\theta}$$
 (II.2)

Учитывая (II.2), выражения (II.1) для потенциала перепишем в виде:

$$\varphi = \frac{q}{4\pi\varepsilon_0 r \sqrt{1 + \left(\frac{l}{r}\right)^2 - 2\frac{l}{r}\cos\theta}}.$$
(II.3)

Получившееся формула (II.3) напоминает производящую функцию $G(\rho, x)$ для полиномов Лежандра. Для удобства сделаем следующие замены: $x = \cos \theta$, $\rho = l/r$. Тогда формула (II.3) будет иметь вид

$$\varphi = \frac{q}{4\pi\varepsilon_0 r\sqrt{1+\rho^2 - 2\rho x}} = \frac{q}{4\pi\varepsilon_0 r} G(\rho, x).$$
(II.4)

Раскладывая в (II.4) функцию $G(\rho, x)$ в ряд по степеням ρ , можно записать формулу (II.4) для потенциала электростатического поля φ одного заряда q через полиномы Лежандра $P_n(x)$:

$$\varphi = \frac{q}{4\pi\varepsilon_0 r} \sum_{n=0}^{\infty} \rho^n P_n\left(x\right) = \frac{q}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{l}{r^{n+1}} P_n\left(\cos\theta\right). \tag{II.5}$$

Используя аналогичные рассуждения, запишем потенциал электростатического поля системы *N* зарядов:

$$\varphi = \frac{1}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \left(\sum_{k=1}^{N} q_k l_k^n P_n\left(\cos\theta_k\right) \right), \tag{II.6}$$

где q_k – величина k-ого заряда, l_k – модуль радиус-вектора k-ого заряда. Полученное выражение имеет важный физический смысл. Пусть $M_n = \sum_{k=1}^N q_k l_k^n P_n \left(\cos \theta_k\right)$, тогда выражение (II.6) можно записать в виде

$$\varphi = \frac{1}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{M_n}{r^{n+1}}.$$
(II.7)

Рассмотрим для примера электрический диполь (система из двух зарядов, одинаковых по модулю, но противоположных по знаку, см рис. II.2). Выпишем для

Рис. II.2. Электрический диполь

такой системы несколько первых значений M_n :

$$M_0 = q - q = 0, \ M_1 = \frac{ql}{2}\cos\theta - \frac{ql}{2}\cos\left(\pi - \theta\right) = ql\cos\theta = \mu\cos\theta,$$

где μ – величина дипольного момента рассматриваемой системы,

$$M_{2} = \frac{ql^{2}}{2}P_{2}(\cos\theta) - \frac{ql^{2}}{2}P_{2}(\cos(\pi - \theta)) = 0$$

В результате формула (II.7) для рассматриваемого диполя примет вид

$$\varphi = \frac{\mu \cos \theta}{4\pi\varepsilon_0 r^2} + O\left(\frac{1}{r^4}\right). \tag{II.8}$$

Если $r \gg l$, т.е. рассматривается поле в точке, расположенной далеко от диполя, то основной вклад дает первое слагаемое. Напряженность электрического поля $\vec{E} = \nabla \varphi$ в этом случае для диполя будет описываться формулой

$$\vec{E} = \frac{\partial \varphi}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial \varphi}{\partial \theta}\vec{e}_\theta = -\frac{\mu\cos\theta}{8\pi\varepsilon_0 r^3}\vec{e}_r - \frac{\mu\sin\theta}{4\pi\varepsilon_0 r^3}\vec{e}_\theta.$$
 (II.9)

На рис. II.3 показаны эквипотенциальные линии и напряженность электрического поля диполя.

Рис. II.3. Эквипотенциальные линии диполя

Величины M_n называются мультипольными моментами. С M_1 связан дипольный момент μ , с M_2 – квадрупольный момент и т.д. Формула (II.7) для потенциала φ представляет собой разложение по мультиполям. Это разложение играет ключевую роль в электродинамике и теории взаимодействия молекул.

Приведем еще один пример, рассмотрим систему из трех зарядов (2 заряда q и один в центре -2q) – квадруполь, показанную на рис. II.4. Выпишем не-

Рис. II.4. Электрический линейный квадруполь

сколько первых мультипольных моментов M_n для этой системы:

$$M_{0} = q - 2q + q = 0, \ M_{1} = \frac{ql}{2}\cos\theta + \frac{ql}{2}\cos(\pi - \theta) = 0,$$
$$M_{2} = \frac{ql^{2}}{4}P_{2}(\cos\theta) + \frac{ql^{2}}{4}P_{2}(\cos(\pi - \theta)) = \frac{ql^{2}}{2}P_{2}(\cos\theta) = \frac{ql^{2}}{2}\frac{3\cos^{2}\theta - 1}{2},$$

$$M_{3} = \frac{ql^{3}}{8}P_{3}\left(\cos\theta\right) + \frac{ql^{3}}{8}P_{3}\left(\cos\left(\pi - \theta\right)\right) = 0.$$

При вычислении приведенных мультипольных моментов использовались свойства четности полиномов Лежандра: $P_2(-\cos\theta) = P_2(\cos\theta)$, $P_3(-\cos\theta) = -P_3(\cos\theta)$.

Выражение (II.7) для потенциала квадруполя φ примет вид

$$\varphi = \frac{1}{4\pi\varepsilon_0} \frac{ql^2}{2} \frac{P_2(\cos\theta)}{r^3} + O\left(\frac{1}{r^5}\right) = \frac{Q}{4\pi\varepsilon_0} \frac{3\cos^2\theta - 1}{2r^3} + O\left(\frac{1}{r^5}\right), \quad (\text{II.10})$$

где *Q* – квадрупольный момент. На рис. II.5 показаны эквипотенциальные линии и напряженность электрического поля квадруполя.

Рис. П.5. Эквипотенциальные линии линейного квадруполя

Присоединенное уравнение Лежандра

Рассмотрим присоединенное уравнение Лежандра в самосопряженном виде (1.56)

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{dy}{dx}\right] + \left(\lambda - \frac{m^2}{1-x^2}\right)y = 0.$$
(III.1)

Найдем решение уравнения (III.1), используя аналогичный метод, примененный для решения уравнения Лежандра (1.1). Сделаем замену функции y(x) на новую z(x) в уравнении (III.1) (см. (1.57)):

$$y(x) = (1 - x^2)^{\frac{m}{2}} z(x).$$
 (III.2)

Подставляя замену (III.2) в уравнение (III.1), получаем следующее дифференциальное уравнение:

$$(1-x^{2})z''-2(m+1)xz'+[n(n+1)-m(m+1)]z=0.$$
 (III.3)

Если m = 0, то уравнение (III.3) переходит в уравнение (1.1), т.е. его решением является полином $P_n(x)$.

Попытаемся найти решение уравнения (III.3) в виде суммы степенного ряда по степеням *x*:

$$z(x) = \sum_{k=0}^{\infty} a_k x^k .$$
 (III.4)

Продифференцируем (III.4):

$$z' = \sum_{k=1}^{\infty} k a_k x^{k-1} = \sum_{k=0}^{\infty} k a_k x^{k-1}, \qquad (\text{III.5})$$

$$z'' = \sum_{k=2}^{\infty} k(k-1)a_k x^{k-2} = \sum_{k=0}^{\infty} (k+2)(k+1)a_{k+2} x^k , \qquad (\text{III.6})$$

$$x^{2}z'' = \sum_{k=2}^{\infty} k(k-1)a_{k}x^{k} = \sum_{k=0}^{\infty} k(k-1)a_{k}x^{k}.$$
 (III.7)

Подставляя (III.4)-(III.7) в уравнение (III.3), получим

$$\sum_{k=0}^{\infty} \left\{ (k+2)(k+1)a_{k+2} + \left[\lambda - (k+m)(k+m+1) \right] a_k \right\} x^k = 0.$$
 (III.8)

Приравняв нулю сумму коэффициентов при каждой степени *x* в уравнении (III.8), составим бесконечную систему уравнений для определения коэффициентов:

$$a_{k+2} = -\frac{\lambda - (k+m)(k+m+1)}{(k+2)(k+1)}a_k.$$
 (III.9)

Так как мы обсуждаем только решения, регулярные на интервале [-1,1], то ряд (III.4) должен быть полиномом конечной степени. Обозначая эту степень

как q, мы получим, что $a_q \neq 0$ и $a_{q+2} = 0$, т.е. если $\lambda = (q+m)(q+m+1)$, то $a_{q+2} = a_{q+4} = ... = 0$. Введем новый индекс n = q + m (в литературе часто вместо n используют индекс l). Индексы q и m принимают целые неотрицательные значения, поэтому n = 0, 1, 2, ... и $n \ge m$. В результате для рассматриваемого случая получаем, что $\lambda = n(n+1)$, т.е. точно такое же, как для обычных полиномов Лежандра. Если n = 0 при m = 0, то $\lambda = 0$ и $z(x) = a_0$, $y(x) = P_0(x)$.

Из предыдущих рассуждений становится ясно, что z(x) является четным или нечетным полиномом степени (n-m):

$$z(x) = a_{n-m}x^{n-m} + a_{n-m-2}x^{n-m-2} + \dots + \begin{cases} a_0\\ a_1x \end{cases}.$$
 (III.10)

Приведем несколько примеров для m = 1. Если n = 1, то q = 0 и, следовательно, $z(x) = a_0$. Если n = 2, то q = 1 и $z(x) = a_1x$. Если n = 3, то q = 2 и $z(x) = a_0 + a_2x^2$, при этом $a_2 = -5a_0$.

Упражнение

- 1. Найти *z*(*x*) для *m* = 1 и *n* = 4.
- 2. Найти z(x) для m = 2 и n = 4.

3. Для всех рассмотренных примеров показать, что $z(x) = d^m P_n(x) / dx^m$.

Продифференцируем уравнение (III.3) один раз по переменной *х*:

 $(1-x^2)(z')''-2((m+1)+1)x(z')'+[n(n+1)-(m+1)(m+2)]z'=0$ (III.11) Однако, если в полученном уравнении z' заменить на z и (m+1) на m, то полученное уравнение переходит в уравнение (III.3). Другими словами, если $P_n(x)$ является решением уравнения (III.3) при m=0, то $P'_n(x)$ является решением (III.11) при m=1. Продолжая аналогию, получим, что $P''_n(x)$ – решение при m=2; $P'''_n(x)$ – при m=3 и т.д. В общем случае при произвольном целом m, $0 \le m \le n$ решением уравнения (III.3) является функция $(d^m/dx^m)P_n(x)$, т.е.

$$z(x) = \frac{d^m}{dx^m} P_n(x), \ 0 \le m \le n.$$
 (III.12)

Подставляя (III.12) в замену (III.2), получим решение уравнения (III.1):

$$y(x) = (1 - x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_n(x), \ 0 \le m \le n.$$
(III.13)

Функция (III.13) называется *присоединенными полиномами Лежандра* и обозначается $P_n^{(m)}(x)$ (иногда в литературе используется обозначение $P_n^m(x)$):

$$P_n^{(m)}(x) = \left(1 - x^2\right)^{\frac{m}{2}} \frac{d^m}{dx^m} P_n(x).$$
(III.14)

Примеры решения физических задач

1. Уравнение Шредингера для центрально-симметричного потенциала

Рассмотрим уравнение Шредингера, которое описывает волноподобное поведение электрона во внешнем потенциальном поле. Стационарное уравнение Шредингера для волновой функции $\psi(r, \theta, \varphi)$ можно записать в виде

$$\Delta \psi + k^2 \psi = 0. \tag{IV.1}$$

Здесь

$$k^{2} = \frac{2m_{0}}{\hbar^{2}} (E - V), \qquad (IV.2)$$

*m*₀ – масса электрона, *ћ* – постоянная Планка, *Е* – энергия электрона, *V* – потенциальная энергия. Это уравнение аналогично уравнению Гельмгольца.

Во многих важных задачах потенциальная энергия V зависит только от расстояния до некоторого центра (центрально-симметричное потенциальное поле). Такой энергией, например, обладает атом с одним электроном – водород, однократно ионизированный гелий He^+ (Z = 2), двукратно ионизированный литий Li^{2+} (Z = 3) и т.д. ($V = -Ze^2/r$ – потенциальная энергия электрона в потенциальном поле -Ze/r (заряд ядра Ze, Z – атомный номер)).

В силу симметрии такую задачу проще решать в сферической системе координат (r, ϑ, φ) , $r \ge 0$, $0 \le \theta \le \pi$, $0 \le \varphi \le \pi$. Хотя в случае центральносимметричного потенциального поля потенциальная энергия V = V(r) и не зависит от углов ϑ и φ , волновая функция $\psi(r, \varphi, \vartheta)$, в общем случае зависит от трех координат. В данном пособии будет рассматриваться частный случай V = const.

В случае центрально-симметричного поля решение уравнение Шредингера (IV.1) можно найти методом разделения переменных. Представим рассматриваемую волновую функцию в виде произведения

$$\psi(r,\theta,\varphi) = R(r)Y(\theta,\varphi). \tag{IV.3}$$

В сферических координатах оператор Лапласа имеет вид

$$\Delta = \nabla^2 = \nabla_r^2 + \frac{1}{r^2} \nabla_{\theta,\varphi}^2 = \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right) + \frac{1}{r^2} \left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}\right], (IV.4)$$

где

$$\nabla_r^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}, \ \nabla_{\theta,\varphi}^2 \equiv \nabla_{\theta}^2 + \frac{1}{\sin^2 \theta} \nabla_{\varphi}^2 = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}.$$
(IV.5)

Подставим (IV.3) и (IV.4) в уравнение (IV.1):

$$\left(\nabla_r^2 + \frac{1}{r^2}\nabla_{\theta\varphi}^2\right)RY + k^2RY = 0$$
или $Y\nabla_r^2R + \frac{R}{r^2}\nabla_{\theta\varphi}^2 + k^2RY = 0.$ (IV.6)

Мы можем разделить функции *R* и *Y*, которые зависят от радиальной координаты и угловых координат:

$$r^2 \frac{\nabla_r^2 R}{R} + k^2 r^2 = -\frac{\nabla_{\theta \varphi}^2 Y}{Y} = \lambda, \qquad (IV.7)$$

где λ – константа разделения переменных. В результате мы получаем два дифференциальных уравнения, одно из которых содержит радиальную часть R(r)волновой функции:

$$\nabla_r^2 R + \left(k^2 - \frac{\lambda}{r^2}\right) R = 0, \qquad (IV.8)$$

а другое угловую функцию:

$$\nabla_{\theta,\varphi}^2 Y + \lambda Y = 0. \qquad (IV.9)$$

Уравнение не содержит потенциальной энергии V (т.е. оно не меняет своего вида для любого центрально-симметричного потенциала). Функция Y зависит только от углов и может рассматриваться как функция на сфере единичного радиуса.

Продолжая разделять переменные в (IV.9), представим функцию *Y* в виде произведения двух функций:

$$Y(\theta, \varphi) = \Theta(\theta) \Phi(\varphi).$$
 (IV.10)

Подстановка (IV.10) в уравнение (IV.9) дает

$$\Phi \nabla_{\theta}^2 \Theta + \frac{\Theta}{\sin^2 \theta} \nabla_{\varphi}^2 \Phi + \lambda \Theta \Phi = 0.$$
 (IV.11)

Разделяя переменные в уравнении (IV.11) на функции от \mathcal{G} и φ , получим

$$\left(\frac{\nabla_{\theta}^2 \Theta}{\Theta} + \lambda\right) \sin^2 \theta = -\frac{\nabla_{\varphi}^2 \Phi}{\Phi} \equiv m^2, \qquad (IV.12)$$

где m^2 – константа разделения переменных. Таким образом,

$$\nabla_{\theta}^{2}\Theta + \left(\lambda - \frac{m^{2}}{\sin^{2}\theta}\right)\Theta = 0, \ \nabla_{\varphi}^{2}\Phi + m^{2}\Phi = 0.$$
 (IV.13)

Последнее уравнение можно переписать в виде

$$\frac{d^2}{d\varphi^2}\Phi(\varphi) + m^2\Phi(\varphi) = 0, \qquad (IV.14)$$

решением которого будет функция $\Phi = Ce^{im\varphi}$. Легко показать, что из периодического условия для φ (это связано с выбором константы разделения в виде m^2) вытекает $\Phi(\varphi + 2\pi) = \Phi(\varphi) = e^{2im\pi} = 1$, т.е. m – целое число (магнитное квантовое число), $m = 0, \pm 1, \pm 2, ...$ Так как функции $e^{im\varphi}$ ортогональны на отрезке $[0, 2\pi]$, то из условия нормировки

$$\int_{0}^{2\pi} \Phi_{m'}^* \Phi_m d\varphi = \delta_{m'm}$$
(IV.15)

получаем, что $C = 1/\sqrt{2\pi}$. Таким образом, решение уравнения (IV.14) окончательно можно записать как

$$\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi}, \ m = 0, \pm 1, \pm 2, \dots$$
(IV.16)

Очевидно, что эти функции (IV.16) образуют полный ортогональный базис на интервале $[0,2\pi]$ – являются базисом комплексного тригонометрического ряда Фурье (см [1]).

Рассмотрим теперь уравнение (IV.13) для функции Θ . Для простоты решения введем новую переменную $x \equiv \cos \theta$, которая принимает значения на промежутке [-1,1], так как $0 \le \theta \le \pi$. Переобозначим также искомую функцию $\Theta(\theta) \Rightarrow P(x)$.

Упражнение. Показать, что
$$\nabla_{\theta}^2 \Theta = \frac{d}{dx} \left[(1 - x^2) \frac{d}{dx} P(x) \right].$$

Уравнение (IV.13) для Θ после замены станет дифференциальным уравнением второго порядка для P(x):

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{dP}{dx}\right] + \left(\lambda - \frac{m^2}{1-x^2}\right)P = 0.$$
 (IV.17)

Как было показано выше, решением этого уравнения (сравни с (1.56)) являются присоединенные полиномы Лежандра (1.62), (1.66). Даже значения для параметра *m* являются теми же самыми: $m = 0, \pm 1, \pm 2, ...$ Для параметра λ можно использовать результаты, полученные ранее: $\lambda = n(n+1)$. В литературе при решении физических задач число *n* обычно обозначают как *l*, и в квантовой механике *l* – угловое (орбитальное) квантовое число, в классической физике – угловой момент. С введенными обозначениями решением уравнения (IV.17) будут присоединенные полиномы Лежандра $P_l^{(m)}(x)$ или $P_l^{(m)}(\cos\theta)$. Напомним, что числа *l* и *m* могут принимать следующие значения:

$$l = 0, 1, 2, ..., m = 0, \pm 1, \pm 2, ..., |m| \le l.$$
 (IV.18)

Следовательно, для l = 0 возможно только m = 0, для l = 1 существует три значения $m: m = 0, \pm 1$ и т.д. Если l = 0, то m = 0 и $P_0^{(0)}(x) = 1$, т.е. решение уравнения Шредингера в этом случае не зависит от угловых координат $\theta u \varphi$. Другими словами, такое решение является сферически изотропным. В результате, применяя только математические соображение и не используя квантовую механику, из анализа решения можно сформулировать важный фундаментальный результат: угловой и магнитный моменты *квантуются* (т.е. принимают только разрешенные значения).

Присоединенные полиномы Лежандра $P_l^{(m)}(x)$ взаимно ортогональны на интервале $-1 \le x \le 1$:

$$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) dx = 0, \ k \neq l,$$
 (IV.19)

и их квадрат нормы

$$\int_{-1}^{1} \left\{ P_l^m(x) \right\}^2(x) dx = \frac{2}{2l+1} \frac{(l+|m|)!}{(l-|m|)!}.$$
 (IV.20)

Для фиксированного значения m присоединенные полиномы Лежандра образуют полный ортогональный базис для интервала $-1 \le x \le 1$.

Объединяя полученные результаты для функций Φ и Θ , получим, что набор сферических функций $Y_l^m(\theta, \varphi)$, определяемых как

$$Y_{l}^{m}(\theta, \varphi) = N_{l}^{m} P_{l}^{(m)}(\cos \theta) e^{im\varphi}, \ |m| < l, \ l = 0, 1, ...,$$
(IV.21)

образует полную ортогональную систему собственных функций для уравнения (IV.9). Соответствующие собственные значения ($\lambda = l(l+1)$ при l = 0, 1, ...) являются 2l + 1-кратно вырожденными и соответствуют 2l + 1 значению, которое может принимать m: m = -l, -l + 1, ..., l - 1, l.

В квантовой механике очень удобно пользоваться сферическими гармониками $Y_l^m(\theta, \varphi)$, нормированными через норму волновой функции, т.е. чтобы в

$$\int \left| \psi(r,\theta,\varphi) \right|^2 dV = \int_0^\infty \left| R \right|^2 r^2 dr \cdot \int_0^\pi \left| \Theta \right|^2 \sin \theta d\theta \cdot \int_0^{2\pi} \left| \Phi \right|^2 d\varphi = 1$$
(IV.22)

каждый интеграл был равен 1 (здесь $dV = r^2 \sin \theta dr d\theta d\phi$ – элемент объема в сферических координатах). В результате (с точностью до произвольного фазового множителя)

$$N_{l}^{m} = (-1)^{\frac{1}{2}(m+|m|)} \left[\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!} \right]^{\frac{1}{2}}.$$
 (IV.23)

Фазовый множитель выбран как $(-1)^{\frac{1}{2}(m+|m|)}$ в выражении (IV.23) таким образом, чтобы сферические гармоники были связаны с угловым моментом сферически симметричной системы. При изучении этих угловых свойств для сферических функций обычно получается именно такой фазовый множитель.

Из выражения (IV.23) следует, что

$$N_l^{-m} = (-1)^m N_l^m, (IV.24)$$

следовательно, из формулы (IV.21) вытекает

$$\left(\Upsilon_{l}^{m}(\theta,\varphi)\right)^{*} = (-1)^{m}\Upsilon_{l}^{-m}(\theta,\varphi).$$
 (IV.25)

Используя уравнения (IV.15), (IV.19), (IV.20) и (IV.23), легко можно показать ортогональность сферических гармоник:

$$\begin{pmatrix} Y_{l'}^{m'}, Y_{l}^{m} \end{pmatrix} = \int \left(Y_{l'}^{m'}(\theta, \varphi) \right)^{*} Y_{l}^{m}(\theta, \varphi) d\Omega =$$

$$= N_{l'}^{m'} N_{l}^{m} \int_{-1}^{1} P_{l'}^{m'}(x) P_{l}^{m}(x) dx \int_{0}^{2\pi} e^{i(m-m')\varphi} d\varphi = \delta_{ll'} \delta_{mm'}.$$
(IV.26)

Здесь $d\Omega = \sin\theta d\theta d\phi$ – телесный угол. Отметим, что коэффициенты N_l^m были выбраны таким образом, чтобы сферические $Y_l^m(\theta, \phi)$ функции были нормированы на 1:

$$\left\|Y_{l}^{m}\left(\theta,\varphi\right)\right\|^{2} = 1.$$
 (IV.27)

Этот результат также получается из (IV.26).

Сферические гармоники $Y_l^m(\theta, \varphi)$ образуют полный ортогональный базис, поэтому любая функция $f(\theta, \varphi)$, для которой интеграл

$$\int \left| f(\theta, \varphi) \right|^2 d\Omega \tag{IV.28}$$

принимает конечные значения, может быть представлена в виде ряда

$$f(\theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_l^m Y_l^m(\theta, \varphi), \qquad (IV.29)$$

коэффициенты C_l^m которого определяются по формуле

$$C_l^m = \left(\Upsilon_l^m, f\right) = \int \left(\Upsilon_l^m(\theta, \varphi)\right)^* f(\theta, \varphi) d\Omega.$$
 (IV.30)

Из свойства четности сферических гармоник легко определить, что при операции инвертирования, которая трансформирует r = -r, в сферических координатах трансформируется

$$\theta \to \pi - \theta, \ \varphi \to \varphi + \pi.$$
 (IV.31)

Из $\cos(\pi - \theta) = -\cos\theta$ получается, что

$$P_l^m \left(\cos[\pi - \theta] \right) = (-1)^{l - |m|} P_l^m \left(\cos \theta \right), \qquad (IV.32)$$

ИИЗ

$$e^{im(\varphi+\pi)} = (-1)^{|m|} e^{im\varphi}$$
 (IV.33)

следует

$$\Gamma_l^m(\pi - \theta, \varphi + \pi) = (-1)^l \Upsilon_l^m(\theta, \varphi), \qquad (IV.34)$$

т.е. Y_l^m имеет четность $(-1)^l$.

Приведем выражения для нескольких первых сферических гармоник:

$$\begin{split} \Upsilon_{0}^{0} &= \frac{1}{\sqrt{4\pi}}, \\ \Upsilon_{1}^{0} &= \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta, \qquad \Upsilon_{1}^{\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{\pm i\varphi}, \\ \Upsilon_{2}^{0} &= \left(\frac{5}{16\pi}\right)^{1/2} \left(3\cos^{2}\theta - 1\right), \ \Upsilon_{2}^{\pm 1} = \mp \left(\frac{15}{32\pi}\right)^{1/2} \sin 2\theta e^{\pm i\varphi}, \ \Upsilon_{2}^{\pm 2} &= \left(\frac{15}{32\pi}\right)^{1/2} \sin^{2}\theta e^{\pm 2i\varphi}. \end{split}$$

На рис. IV.1 показаны графики этих гармоник в полярной системе координат.

Рис. IV.1. Графики в полярной системе координат функции $|Y_l^m|$ в зависимости от θ в плоскости оси z для l = 0, 1, 2 (учитывается соотношение $|Y_l^m| = |Y_l^{-m}|$)

Вернемся теперь к уравнению (IV.8) для радиальной функции R(r):

$$\nabla_r^2 R + \left(k^2 - \frac{\lambda}{r^2}\right) R = 0.$$
 (IV.35)

Полное решение уравнения Шредингера (IV.1) представляет собой произведение сферических гармоник на радиальную функцию (IV.3). Для данного значения l решением уравнения (IV.35) является набор собственных функций $R_{kl}(r)$. Индекс k соответствует значению параметра k в уравнении (IV.35). Для ограниченного движения, подобного движению электрона в атоме, параметр k должен принимать дискретные значения, т.е. энергия электрона в атоме квантуется. Вместо обозначения k будем использовать n (как это принято в литературе), которое будет иметь смысл некоторого квантового числа. Ограниченность движения означает $R(r \rightarrow \infty) = 0$ в случае атома или R(r = a) = 0 для сферической непроницаемой потенциальной стенки радиуса a. Эти отношения являются граничными условиями для уравнения (IV.35), и значения квантового числа n должны быть найдены в процессе решения. В результате собственные значения, соответствующие собственным функциям R(r) уравнения (IV.35), являются дискретными уровнями энергии системы, E_{kl} и E_{nl} .

Волновая функция (IV.3), зависящая от квантовых чисел k, l, m или n, l, m, имеет вид:

$$\psi_{nlm}(r,\theta,\varphi) = R_{nl}(r)Y_l^m(\theta,\varphi).$$
 (IV.36)

Для $V = -Ze^2/r$ уравнение для R(r) напоминает уравнение Лежандра, решением которого являются полиномы Лежандра. Однако решение такого уравнения выходит за пределы рассматриваемого пособия, поэтому ограничимся только частным случаем V = const на интервале (0, a).

Для упрощения решения введем новую переменную x = kr. Тогда d/dr = k d/dx, $d^2/dr^2 = k^2 d^2/dx^2$ и уравнение (IV.35) для функции R(x) перепишется в следующем виде:

$$\frac{d^2 R(x)}{dx^2} + \frac{2}{x} \frac{dR(x)}{dx} + \left[1 - \frac{l(l+1)}{x^2}\right] R(x) = 0.$$
 (IV.37)

Это уравнение Бесселя, решением которого являются сферические функции Бесселя (см [2,9]). Уравнение (IV.37) можно привести к обычному уравнению Бесселя, если сделать замену $R(x) = y(x)/\sqrt{x}$:

$$\frac{d^2 y(x)}{dx^2} + \frac{1}{x} \frac{dy(x)}{dx} + \left[1 - \frac{(l+1/2)^2}{x^2}\right] y(x) = 0.$$
 (IV.38)

Если ввести обозначение s = l + 1/2, то общим решением уравнения Бесселя (IV.38) будет функция

$$y(x) = C_1 J_s(x) + C_2 N_s(x),$$
 (IV.39)

где $J_s(x)$ и $N_s(x)$ – (цилиндрические) функции Бесселя и Неймана соответственно. Так как s = l + 1/2, то эти функции имеют полуцелый порядок. В результате решением уравнения (IV.37) будет функция

$$R(x) = C_1 \frac{J_{l+1/2}(x)}{\sqrt{x}} + C_2 \frac{N_{l+1/2}(x)}{\sqrt{x}}.$$
 (IV.40)

Условию ограниченности функции (IV.40) при *x* = 0 удовлетворяет только первое слагаемое. Записывая сферические функции Бесселя через функции полуцелого порядка

$$j_l(x) = \sqrt{\frac{\pi}{2x}} J_{l+1/2}(x),$$
 (IV.41)

перепишем решение (IV.40) в виде

$$R(x) = Cj_l(x)$$
 или $R_{nl}(kr) = Cj_l(kr)$. (IV.42)

Постоянную интегрирования в (IV.42) найдем с помощью условия нормировки:

$$\int_{0}^{\infty} |R_{nl}|^2 r^2 dr = 1.$$
 (IV.43)

В качестве примера рассмотрим частицу в сферически-симметричном потенциале V радиуса r = a. V = const на интервале r < a (значение потенциала можно перенормировать и положить равным нулю). Частица не может покинуть область r < a, т.е. $V = \infty$ при r = a. Такая модель может служить простым описанием атома с радиусом r = a и непроницаемой поверхностью.

В области r < a частица двигается таким образом, что

$$\psi_{klm}(r,\theta,\varphi) = Cj_l(kr)Y_l^m(\theta,\varphi).$$
(IV.44)

Волновая функция не существует при r > a, потому что частица не может преодолеть потенциальный барьер $V = \infty$ при r = a. Непрерывность волновой функции приводит к граничному условию

$$j_l(ka) = 0. \tag{IV.45}$$

Обозначим корни сферической функции Бесселя $j_l(x) = 0$ порядка l как x_{nl} , тогда

$$x_{nl} = ak_{nl}, \ n = 1, 2, 3, \dots$$
 (IV.46)

или

$$k_{nl} = x_{nl} / a . \tag{IV.47}$$

Учитывая (IV.2), из уравнения (IV.47) для *k* мы получаем спектр уровней энергии частицы

$$E_{nl} = \frac{\hbar^2 k_{nl}^2}{2m_0} = \frac{\hbar^2}{2m_0 a^2} x_{nl}^2.$$
 (IV.48)

Из формулы (IV.48) видно, что энергия не зависит от квантового числа m, так как каждое собственное значение краевой задачи 2l + 1-кратно вырождено, т.е. одному значению E_{nl} соответствует 2l + 1 различных функций ψ_{nlm} . Для l = 0 корни уравнения $j_0(x) = 0$ будут $x = \pi n$, так что

$$E_{n0} = \frac{1}{2m_0} \left(\frac{n\pi\hbar}{a}\right)^2.$$
 (IV.49)

Этому состоянию соответствует волновая функция

$$\psi_{n00}(r,\theta,\phi) = Cj_0(kr)Y_0^0(\theta,\phi) =$$

$$= \frac{1}{\sqrt{2\pi a}} \frac{1}{\sqrt{4\pi}} \frac{a}{\pi nr} \sin\frac{\pi nr}{a} = \sqrt{\frac{a}{2}} \frac{1}{2\pi^2 nr} \sin\frac{\pi nr}{a},$$
(IV.50)

где коэффициент $C = 1/\sqrt{2\pi a}$ получен из условия нормировки (IV.43):

$$\int_{0}^{a} R_{n0} r^2 dr = 1.$$
 (IV.51)

В квантовой механике квадрат модуля $|\psi_{nlm}(r,\theta,\phi)|^2$ волновой функции $\psi_{nlm}(r,\theta,\phi)$ интерпретируется как вероятность нахождения частицы в точке с координатами r,θ,ϕ . Из формулы (IV.50) для функции ψ_{n00} следует, что вероятность изменяется периодически с изменением расстояния от центра и существуют расстояния, когда частица не может быть локализована на них всех. Примером подобной дистанции является r = a/2 для состояния с n = 2. Такие «узлы» разделяются максимумами, в которых частица может находится с наибольшей вероятностью – эти максимумы соответствуют «орбитам» в клас-

сической интерпретации. Для состояний с $l \neq 0$ такие орбиты обладают более сложной геометрией, которая следует из вида $|Y_l^m(\theta, \varphi)|^2$.

Упражнение. Для l = 1 построить трехмерный график функции $|Y_1^m(\theta, \varphi)|^2$ для трех возможный значений $m = 0, \pm 1$.

Суперпозиция волновых функций $\psi_{nlm}(r, \theta, \phi)$ для всех возможных значений квантовых чисел:

$$\sum_{n=1}^{\infty}\sum_{l=0}^{\infty}\sum_{m=-l}^{l}c_{nlm}\psi_{nlm}(r,\theta,\varphi).$$
 (IV.52)

Значения $|c_{nlm}|^2$ определяют вероятность нахождения частицы в состоянии, описываемом квантовыми числами n, l, m.

2. Колебания сферы: звуковая волна в сферической полости

Распространение звуковой волны описывается волновым уравнением (уравнение д'Аламбера):

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \,, \tag{IV.53}$$

где ∇^2 – оператор Лапласа, u – отклонение плотности от равновесного значения, c – скорость звука. Отметим, что распространение звуковой волны возможно только в сжимаемой среде, плотность которой может изменяться.

Рассмотрим две типичных ситуации: распространение акустической волны в сферической полости, заполненной газом, распространение звуковой волны внутри колеблющейся сферической капли сжимаемой жидкости.

1. Рассмотрим сферическую полость, заполненную газом. Полость имеет радиус r_0 и не деформируется. При колебаниях газа в такой полости возникнет звуковая волна. Для решения задачи воспользуемся сферической системой координат (r, φ, θ) , начало отсчета которой поместим в центр полости.

Потенциал скорости частиц газа описывается волновым уравнением (IV.53):

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial^2 \varphi} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right) u. \quad (IV.54)$$

На внутренней поверхности полости радиальная (в общем случае произвольной формы полости – нормальная) компонента скорости отклонения плотности должна обращаться в ноль (частица не может вылететь за пределы полости):

$$\frac{\partial u}{\partial r}\Big|_{r=r_0} = 0, \ 0 \le \varphi \le 2\pi, \ 0 \le \theta \le \pi, \ 0 \le t < \infty.$$
(IV.55)

Прочие граничные условия очевидны:

$$\begin{aligned} u\big|_{r=0} &< \infty, \ \left|u\big|_{r=r_0} &< \infty, \ 0 \le \varphi \le 2\pi, \ 0 \le \theta \le \pi, \ 0 \le t < \infty, \\ u\big(r, \varphi, \theta, t\big) &= u\big(r, \varphi + 2\pi, \theta, t\big), \ 0 \le r \le r_0, \\ \left|u\big|_{\theta=0} &< \infty, \ \left|u\big|_{\theta=\pi} < \infty, \ 0 \le r \le r_0, \ 0 \le \varphi \le 2\pi. \end{aligned}$$
(IV.56)

Начальные условия:

$$u\Big|_{t=0} = f_1(r,\theta,\varphi), \ \frac{\partial u}{\partial t}\Big|_{t=0} = f_2(r,\theta,\varphi),$$
(IV.57)

где f_1 и f_2 – известные функции.

Задачу (IV.54)–(IV.57) будем решать с помощью метода разделения переменных. Для этого представим функцию $u(r, \varphi, \theta, t)$ в виде произведения двух функций:

$$u(r,\varphi,\theta,t) = T(t)v(r,\varphi,\theta).$$
(IV.58)

Подставим функцию (IV.58) в уравнение (IV.54) и разделим переменные:

$$\frac{1}{Tc^2}\frac{\partial^2 T}{\partial t^2} = \frac{\Delta v}{u} = -k^2, \qquad (IV.59)$$

где *k* – константа разделения переменных. Полученное дифференциальное уравнение (IV.59) разделяется на два:

$$\frac{\partial^2 T}{\partial t^2} + k^2 c^2 T = 0, \ \Delta v + k^2 u = 0.$$
 (IV.60)

Во втором уравнении надо еще два раза разделить переменные аналогичным образом, вводя замену $u(r, \varphi, \theta) = R(r)Y(\varphi, \theta), Y(\varphi, \theta) = \Phi(\varphi)\Theta(\theta)$:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right)R + \left(k^2 - \frac{\lambda}{r^2}\right)R = 0, \qquad (IV.61)$$

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) \Theta + \left(\lambda - \frac{m^2}{\sin^2\theta} \right) \Theta = 0, \qquad (IV.62)$$

$$\frac{\partial^2 \Phi}{\partial \varphi^2} + m^2 \Phi = 0.$$
 (IV.63)

Решением уравнения (IV.61) являются функции Бесселя дробного порядка (см. [2,9]) при $\lambda = l(l+1), l = 0, 1, 2, ...$:

$$R(x) = c_1 \frac{J_{l+1/2}(kr)}{\sqrt{kr}} + c_2 \frac{N_{l+1/2}(kr)}{\sqrt{kr}} = C_1 j_l(kr) + C_2 n_l(kr), \qquad (IV.64)$$

где j_l и n_l – сферические функции Бесселя. Константу C_2 необходимо положить равной нулю, чтобы решение было ограничено при $r \to 0$ согласно условию (IV.56). Используя граничное условие (IV.55), можно найти собственные значения k из решения уравнения:

$$\frac{\partial j_l(k_{ln}r)}{\partial r}\bigg|_{r=r_0} = 0, \ n = 0, 1, 2, \dots$$
(IV.65)

Решение уравнения (IV.63), учитывая условия периодичности (IV.56), запишем в виде

$$\Phi(\varphi) = B_1 \cos(m\theta) + B_2 \sin(m\theta), \ m = 0, 1, \dots, l.$$
 (IV.66)

При таких значениях λ и *m* уравнение (IV.62) является присоединенным уравнением Лежандра, решением которого являются присоединенные полиномы Лежандра:

$$\Theta(\theta) = DP_l^m(\cos\theta). \tag{IV.67}$$

Теперь можно записать общее решение второго уравнения (IV.60):

$$v_{lmn}\left(r, \varphi, \theta, t
ight) = j_{l}\left(k_{ln}r
ight)P_{l}^{m}\left(\cos heta
ight)\left(B_{1}\cos\left(m heta
ight) + B_{2}\sin\left(m heta
ight)
ight).$$

Полученное решение можно переписать через сферические функции $Y_l^m(\theta, \varphi)$:

$$v_{lmn}\left(r,\varphi,\theta,t\right) = C_{lmn}j_{l}\left(k_{ln}r\right)Y_{l}^{m}\left(\theta,\varphi\right),$$
(IV.68)

где

 $Y_l^0(heta, arphi) = P_l(\cos heta), \qquad \qquad Y_l^m(heta, arphi) = P_l^m(\cos heta)\sin marphi,$ $Y_l^{-m}(\theta, \varphi) = P_l^m(\cos \theta) \cos m \varphi, \ m = 1, 2, ..., l.$

Решение первого уравнения (IV.60) запишем в виде

$$T_{ln} = A_{ln} \cos \omega_{ln} t + B_{ln} \sin \omega_{ln} t, \qquad (IV.69)$$

где $\omega_{ln} = k_{ln}c$ – частота собственных колебаний. Константы A_{ln} и B_{ln} находятся из разложения в ряд Фурье правых частей начальных условий (IV.57) по собственным функциям (IV.68). Теперь запишем окончательное решение краевой задачи (IV.54)-(IV.57):

$$u(r,\varphi,\theta,t) = \sum_{l,m,n} \left(A_{ln} \cos \omega_{ln} t + B_{ln} \sin \omega_{ln} t \right) j_l(k_{ln} r) Y_l^m(\theta,\varphi).$$
(IV.70)

2. Рассмотрим теперь распространение звуковой волны в капле сжимаемой жидкости. Капля окружена разреженным газом малой плотности. Пусть в равновесном состоянии она имеет форму сферы радиуса r_0 . Звуковая волна описывается волновым уравнением (IV.53), которое будет иметь вид, аналогичный (IV.54). При распространении звуковой волны возникают неоднородности плотности и давления в жидкости и газе. Изменение давления в среде при распространении звуковой волны прямо пропорционально изменению плотности. Коэффициент пропорциональности определяется сжимаемостью среды, и в идеальной жидкости (газе) сжатие и расширение происходит адиабатически (изэнтропически). Вообще говоря, этот коэффициент сжимаемости является характеристикой среды и в общем случае зависит от ее термодинамического состояния (давления, температуры и т.д.). Этот коэффициент можно считать постоянным, если величины изменения плотности и давления невелики по сравнению со значениями плотности и давления в отсутствии звуковой волны, т.е. в случае малых возмущений.

Так как газ имеет плотность много меньшую по сравнению с плотностью жидкости, то изменением плотности газа при распространении звуковой волны можно пренебречь. Соответственно можно пренебречь и изменением давления в газе. Если мы пренебрегаем изменением давления в газе, то на поверхности капли давление жидкости также не должно меняться с течением времени (т.е. величина изменения давления жидкости должна быть такой же, как и величина изменения давления газа), иначе капля может начать неограниченно расширяться, что противоречит физическому смыслу. Для этого необходимо на поверхности капли положить потенциал скорости равным нулю:

$$u(r_0, \varphi, \theta, t) = 0. \tag{IV.71}$$

Условие (IV.71) вытекает из уравнения движения Эйлера для скорости жидкости \vec{V} в случае малых возмущений:

$$\frac{\partial V}{\partial t} = -\frac{1}{\rho} \nabla p \quad \text{или} \quad \frac{\partial \varphi}{\partial t} = -\frac{1}{\rho} p \,. \tag{IV.72}$$

Таким образом, эта задача отличается от рассмотренной выше только изменением граничного условия (IV.55) на (IV.71) и условия на потенциал в (IV.56):

$$\begin{aligned} \left|u\right|_{r=0} &< \infty, \ \left|u_{r}\right|_{r=r_{0}} &< \infty, \ 0 \leq \varphi \leq 2\pi, \ 0 \leq \theta \leq \pi, \ 0 \leq t < \infty \\ &u\left(r,\varphi,\theta,t\right) = u\left(r,\varphi+2\pi,\theta,t\right), \ 0 \leq r \leq r_{0}, \\ &\left|u\right|_{\theta=0} &< \infty, \ \left|u\right|_{\theta=\pi} < \infty, \ 0 \leq r \leq r_{0}, \ 0 \leq \varphi \leq 2\pi. \end{aligned}$$
(IV.73)

Полученная краевая задача (IV.54), (IV.71), (IV.73) также решается методом разделения переменных, и ее решение можно представить в виде, аналогичном (IV.70):

$$u(r,\varphi,\theta,t) = \sum_{l,m,n} \left(A_{ln} \cos \omega_{ln} t + B_{ln} \sin \omega_{ln} t \right) j_l(k_{ln} r) Y_l^m(\theta,\varphi).$$
(IV.74)

Собственные значения k_{ln} определяется при удовлетворении решения (IV.74) граничному условию (IV.71) (сравни с (IV.55) и (IV.65)):

$$j_l(k_{ln}r_0) = 0.$$
 (IV.75)

3. Распространение тепла в однородном шаре

Исследуем задачу о распространении тепла в однородном шаре радиуса r_0 . В силу симметрии задачи, решение будем искать в сферической системе координат (r, θ, φ) , начало отсчета которой поместим в центр шара.

Для простоты предположим, что температура на поверхности шара всегда равна нулю. Распространение тепла описывается уравнением теплопроводности (уравнение параболического типа):

$$u_t = a^2 \Delta u \,, \tag{IV.76}$$

где $u(r, \theta, \phi, t)$ – температура (или отклонение от температуры на поверхности шара), a^2 – коэффициент теплопроводности.

К уравнению (IV.76) необходимо добавить начальные и граничные условия:

$$u\Big|_{t=0} = f(r,\theta,\phi), \ u\Big|_{r=r_0} = 0, \ |u\|\Big|_{r\to 0} < \infty.$$
 (IV.77)

Решение уравнения (IV.76) будем искать с помощью метода разделения переменных:

$$u(r,\theta,\varphi,t) = T(t)v(r,\theta,\varphi).$$
 (IV.78)

Подставляем решение (IV.78) в (IV.76) и, разделяя переменные

$$\frac{\Delta v}{v} = \frac{T'}{a^2 T} = -\lambda^2, \qquad (IV.79)$$

получим два дифференциальных уравнения:

$$T' + a^2 \lambda^2 T = 0, \qquad (IV.80)$$

$$\Delta v + \lambda^2 v = 0. \tag{IV.81}$$

Чтобы получить нетривиальные решения (IV.78) уравнения (IV.76), которые удовлетворяют граничному условию (IV.77), необходимо найти нетривиальные решения уравнения (IV.81), удовлетворяющие граничному условию $v|_{r=r_0} = 0.$ (IV.82)

Решение уравнения (IV.81) будем искать методом разделения переменных: $v(r, \theta, \varphi) = R(r)Y(\theta, \varphi).$ (IV.83)

Подставим это решение в уравнение (IV.81) и, разделяя переменные, получим два дифференциальных уравнения:

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\varphi^2} + \mu Y = 0, \qquad (IV.84)$$

$$\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} + \left(\lambda^2 - \frac{\mu}{r^2}\right)R = 0.$$
 (IV.85)

Решением уравнения (IV.84) при условии ограниченности решения на всей поверхности сферы будут сферические функции (см. 2.12) $P_n(\cos\theta)$, $P_{nm}(\cos\theta)\cos m\varphi$, $P_{nm}(\cos\theta)\sin m\varphi$, m = 1, 2, 3, ... для собственных значений $\mu = n(n+1)$.

Рассмотрим теперь уравнение (IV.85). Учитывая граничное условие (IV.82) и ограниченность решения (IV.77), получим для функции R(r) следующую краевую задачу:

$$\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} + \left(\lambda^2 - \frac{\mu}{r^2}\right)R = 0, \qquad (IV.86)$$

$$R\Big|_{r=r_0} = 0, \ \left|R\right|_{r\to 0} < \infty.$$
 (IV.87)

С помощью подстановки $R(r) = y(r)/\sqrt{r}$ уравнение (IV.86) сводится к уравнению Бесселя (см. [1]):

$$r^{2}y'' + ry' + \left(\lambda^{2}r^{2} - \left(n + \frac{1}{2}\right)^{2}\right)y = 0, \qquad (IV.88)$$

общее решение которого имеет вид

$$y = AJ_{n+\frac{1}{2}}(\lambda r) + BY_{n+\frac{1}{2}}(\lambda r).$$
 (IV.89)

Из условия ограниченности решения (IV.87) находим, что B = 0, а из граничного условия получаем

$$AJ_{n+\frac{1}{2}}(\lambda r_0) = 0.$$
 (IV.90)

Так как необходимо найти нетривиальное решение, то $A \neq 0$ и

$$J_{n+\frac{1}{2}}(\lambda r_0) = 0.$$
 (IV.91)

Обозначив через η_{n1} , η_{n2} , η_{n2} , ... положительные корни трансцендентного уравнения

$$J_{n+\frac{1}{2}}(\eta) = 0, \qquad (IV.92)$$

найдем собственные значения

$$\lambda_{mn}^2 = \left(\frac{\eta_{nm}}{r_0}\right)^2, \ m = 1, 2, 3, ..., \ n = 0, 1, 2, 3, ...$$
 (IV.93)

В итоге получаем, что каждому собственному значению λ_{mn}^2 краевой задачи (IV.81)–(IV.82) соответствует 2n + 1 собственных функций

$$\nu_{mnl}(r,\theta,\varphi) = \frac{1}{\sqrt{r}} J_{n+\frac{1}{2}}\left(\frac{\eta_{mn}}{r_0}r\right) Y_n^{(l)}(\theta,\varphi), \ l = -n,...,-1,0,1,...,n,$$
(IV.94)

где

$$Y_n^{(l)}(\theta,\varphi) = P_n^{(l)}(\cos\theta)\cos l\varphi, \ Y_n^{(-l)}(\theta,\varphi) = P_n^{(l)}(\cos\theta)\sin l\varphi, \qquad (IV.95)$$
$$l = 0, 1, 2, ..., n.$$

Общее решение уравнения (IV.80) имеет вид

$$T_{mn}(t) = A_{mn} \exp\left(-\left(\frac{\alpha\eta_{nm}}{r_0}\right)^2 t\right), \qquad (IV.96)$$

где A_{mn} – произвольная постоянная.

Подставляя (IV.94) и (IV.96) в решение (IV.78), получим

$$u_{mn}(r,\theta,\varphi,t) = \frac{1}{\sqrt{r}} J_{n+\frac{1}{2}}\left(\frac{\eta_{nm}}{r_0}r\right) Y_n(\theta,\varphi) \exp\left(-\left(\frac{a\eta_{nm}}{r_0}\right)^2 t\right), \quad (IV.97)$$

где

$$Y_n(\theta,\varphi) = b_{0m}P_n(\cos\theta) + \sum_{k=1}^n (b_{km}\cos k\varphi + c_{km}\sin k\varphi)P_n^{(k)}(\cos\theta) - (\text{IV.98})$$

сферическая функция порядка n, удовлетворяющая уравнению (IV.76) и граничному условию (IV.77) при любых b_{km} и c_{km} .

Решение исходной задачи представляется в виде ряда

$$u(r,\theta,\varphi,t) = \sum_{n=0}^{\infty} \sum_{m=1}^{n} u_{mn}(r,\theta,\varphi,t).$$
(IV.99)

Требуя выполнения начального условия (IV.77), получим:

$$f(\mathbf{r},\theta,\varphi) = \sum_{n=0}^{\infty} \sum_{m=1}^{n} \frac{1}{\sqrt{\mathbf{r}}} J_{n+\frac{1}{2}}\left(\frac{\eta_{nm}}{\mathbf{r}_{0}}\mathbf{r}\right) Y_{n}(\theta,\varphi).$$
(IV.100)

Неизвестные сферические функции $Y_n(\theta, \phi)$ находятся из разложения в ряд Фурье функции $f(r, \theta, \phi)$:

$$Y_{n}(\theta,\varphi) = \frac{2n+1}{2\pi r_{0}^{2}J_{n+\frac{3}{2}}^{2}(\eta_{nm})} \int_{0}^{r_{0}} \int_{0}^{2\pi} \int_{0}^{\pi} r^{\frac{3}{2}} f(r,\phi,\theta) P_{n}(\cos\theta) J_{n+\frac{1}{2}}\left(\frac{\eta_{nm}}{r_{0}}r\right) \sin\theta d\phi d\theta dr.^{(IV.101)}$$
Основные формулы и соотношения

Уравнение Лежандра:

$$\frac{d}{dx}\left[\left(1-x^2\right)\frac{dy}{dx}\right]+n(n-1)y=0, -1\leq x\leq 1.$$

Полиномы Лежандра:

$$P_{n} = \frac{1}{2^{n}} \sum_{k=0}^{\infty} \frac{(-1)^{k} (2n-2k)!}{k! (n-k)! (n-2k)!} x^{n-2k}.$$

Формула Родрига для полиномов Лежандра:

$$P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} (1 - x^2)^n = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

Частные случаи полиномов Лежандра и их значения:

$$P_{0}(x) = 1, P_{1}(x) = x, P_{2}(x) = \frac{1}{2}(3x^{2} - 1), P_{3}(x) = \frac{1}{2}(5x^{3} - 3x),$$

$$P_{n}(1) = 1, P_{2n+1}(0) = 0, P_{2n}(0) = (-1)^{n} \frac{1 \cdot 3 \cdot ... \cdot (2n - 1)}{2 \cdot 4 \cdot ... \cdot 2n}.$$

Свойство четности полиномов Лежандра:

$$P_n(-x)=(-1)^n P_n(x).$$

Рекуррентные соотношения:

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0,$$

$$P'_{n-1}(x) - xP'_n(x) + nP_n(x) = 0,$$

$$P'_n(x) - xP'_{n-1}(x) - nP_{n-1}(x) = 0$$

Ортогональность полиномов Лежандра:

$$\int_{-1}^{1} P_{n}(x) P_{m}(x) dx = \begin{cases} 0, & m \neq n, \\ \frac{2}{2n+1}, & m = n \end{cases}$$

Присоединенное уравнение Лежандра:

$$(1-x^2)y''-2xy'+\left(n(n-1)-\frac{m^2}{1-x^2}\right)y=0, -1 \le x \le 1.$$

Присоединенные полиномы Лежандра:

$$P_n^{(m)}(x) = (1-x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_n(x).$$

Формула Родрига:

$$P_n^{(m)}(x) = \frac{1}{2^n n!} (1 - x^2)^{m/2} \frac{d^{n+m}}{dx^{n+m}} (x^2 - 1)^n,$$

$$P_n^{(m)}(x) = (-1)^m \frac{(n+m)!}{(n-m)!} \frac{(x^2-1)^{-m/2}}{2^n n!} \frac{d^{n-m}}{dx^{n-m}} (x^2-1)^n.$$

Отрицательная степень:

$$P_n^{(-m)}(x) = (-1)^m \frac{(n-m)!}{(n+m)!} P_n^{(m)}(x).$$

Свойство четности полиномов Лежандра:

$$P_n^{(m)}(-x) = (-1)^{n-m} P_n^{(m)}(x).$$

Частные значения присоединенных полиномов Лежандра:

$$\begin{split} P_1^{(1)}(x) &= (1-x^2)^{\frac{1}{2}} \cdot \left[P_1(x)\right]' = (1-x^2)^{\frac{1}{2}}, \\ P_2^{(1)}(x) &= (1-x^2)^{\frac{1}{2}} \cdot \left[P_2(x)\right]' = (1-x^2)^{\frac{1}{2}} \cdot 3x, \\ P_3^{(1)}(x) &= (1-x^2)^{\frac{1}{2}} \cdot \left[P_3(x)\right]' = (1-x^2)^{\frac{1}{2}} \cdot \left(\frac{15}{2}x^2 - \frac{3}{2}\right), \\ P_2^{(2)}(x) &= (1-x^2) \cdot \left[P_2(x)\right]'' = (1-x^2) \cdot 3, \\ P_3^{(2)}(x) &= (1-x^2) \cdot \left[P_3(x)\right]'' = (1-x^2) \cdot 15x, \\ P_4^{(2)}(x) &= (1-x^2) \cdot \left[P_4(x)\right]'' = (1-x^2) \cdot \left(\frac{105}{2}x^2 - \frac{15}{2}\right). \end{split}$$

Рекуррентные соотношения:

$$P_{n}^{(m+2)}(x) - 2(m+1)\frac{x}{\sqrt{1-x^{2}}}P_{n}^{(m+1)}(x) + (n-m)(n+m+1)P_{n}^{(m)}(x) = 0,$$

$$(2n+1)xP_{n}^{(m)}(x) - (n-m+1)P_{n+1}^{(m)}(x) - (n+m)xP_{n-1}^{(m)}(x) = 0,$$

$$(x^{2}-1)\frac{d}{dx}P_{n}^{(m)}(x) - (n-m+1)P_{n+1}^{(m)}(x) - (n+m)xP_{n-1}^{(m)}(x) = 0.$$

Ортогональность присоединенных полиномов Лежандра:

$$\int_{-1}^{1} P_{n}^{(m)}(x) P_{k}^{(m)}(x) dx = \begin{cases} 0, & n \neq k, \\ \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}, & n = k. \end{cases}$$

Уравнение сферических функций:

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\varphi^2} + n(n-1)Y = 0$$

Сферические функции:

$$m = 0 \qquad Y_n^{(0)}(\theta, \varphi) = P_n(\cos \theta);$$

$$m = 1 \qquad V_n^{(-1)}(\theta, \varphi) = P_n^{(1)}(\theta, \varphi) = P_n^{(1)}(\theta, \varphi) = P_n^{(1)}(\theta, \varphi)$$

$$m = 1 \qquad Y_n^{(-1)}(\theta, \varphi) = P_n^{(1)}(\cos \theta) \cos \varphi, \ Y_n^{(1)}(\theta, \varphi) = P_n^{(1)}(\cos \theta) \sin \varphi;$$

$$m = k Y_n^{(-k)}(\theta, \varphi) = P_n^{(k)}(\cos\theta)\cos k\varphi, \ Y_n^{(k)}(\theta, \varphi) = P_n^{(k)}(\cos\theta)\sin k\varphi, \ k = 1, 2, ..., n.$$

Сферические гармоники:

$$Y_n(\theta,\varphi) = \sum_{m=0}^n (A_{nm}\cos m\varphi + B_{nm}\sin m\varphi)P_n^{(m)}(\cos\theta)$$

или

$$Y_n(\theta,\varphi) = \sum_{m=-n}^n C_{nm} Y_n^{(m)}(\theta,\varphi), \ C_{nm} = \begin{cases} A_{nm}, & m \le 0, \\ B_{nm}, & m > 0. \end{cases}$$

Ортогональность сферических функций:

ſ

$$\iint_{S} Y_{n}^{(m)} Y_{n}^{(l)} d\Omega = \begin{cases} 0 & npu \quad l \neq m, \\ \frac{2\pi}{2n+1} \frac{(n+k)!}{(n-k)!} & npu \quad l = m = k \neq 0, \\ 2\pi \frac{2}{2n+1} & npu \quad l = m = 0. \end{cases}$$

<u>Содержание</u>

Глава 1. Функции Лежандра	3
1.1. Краевая задача, приводящая к полиномам Лежандра	3
1.2. Производящая функция полиномов Лежандра	10
1.3. Рекуррентные соотношения	11
1.4. Ортогональность полиномов Лежандра	12
1.5. Присоединенные функции Лежандра $P_n^{(m)}(x)$	14
1.6. Норма и ортогональность присоединенных полиномов	18
Лежандра	10
1.7. Ряды Фурье–Лежандра	18
1.8. Ряды Фурье–Лежандра для присоединенных полиномов	23
Лежандра	20
Глава 2. Сферические функции	28
2.1. Ортогональность системы сферических функций	29
2.2. Разложение в ряд Фурье по сферическим функциям	31
2.3. Примеры решения задач	33
2.4. Задачи	42
Библиографический список	48
Приложение І. Формула Родрига	49
Приложение II. Разложение по мультиполям	51
Приложение III. Присоединенное уравнение Лежандра	55
Приложение IV. Примеры решения физических задач	57
Приложение V. Основные формулы и соотношения	72

Учебно-методическое издание

Алабужев Алексей Анатольевич Белозерова Татьяна Сергеевна Хеннер Виктор Карлович

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ ЧАСТЬ II СПЕЦИАЛЬНЫЕ ФУНКЦИИ ПОЛИНОМЫ ЛЕЖАНДРА

Редактор Г.В. Тулякова Корректор И.А. Михина Компьютерная верстка А.А. Алабужева

Подписано в печать 20.01.2009. Формат 60х84¹/₁₆. Усл. печ. л. 4,42. Уч.-изд. л. 1,8. Тираж 100 экз. Заказ

Редакционно-издательский отдел Пермского государственного университета 614990. Пермь, ул. Букирева, 15

Отпечатано на ризографе ООО «Учебный центр «Информатика» 614990. Пермь, ул. Букирева, 15